




M R .  N E I G H B O R L Y ' S

HUMBLE LITTLE
RUBY BOOK





M R .  N E I G H B O R L Y ' S

HUMBLE LITTLE
RUBY BOOK

Jeremy McAnally



All content ©2006 Jeremy McAnally.  All Right Reserved.

That means don't copy it.



For my wife, friends, and family,
thank you for the support and food.

Mostly the food.





  TABLE OF CONTENTS 

0 What'chu talkin'  'bout, Mister?    4
What Is Ruby Anyhow? 4

Installing Ruby 6

Windows 6 · Mac OS X 6 · Linux 7

Let's try her out!  8

1 Welcome to Ruby    10
Basic Concepts of Ruby 10

Types in Ruby  11

Strings  11 · Numbers  13

Collections  14

The Range  15 · The Array  16 · The Hash  20

Variables and the Like  23

2 Break it down now!    27
Methods  27

Defining Methods  28 · Using Methods  30

Blocks and Proc Objects  31

Block Basics  31 · Procs and Blocks  33 · Building Blocks 35 

      Your objects lack class!  36

Defining Classes  37 · Methods and Variables  38 · Attributes  40 ·
Access Control  41 ·

Class Scoped Objects  42

Modules  44

Creating Modules  44

Files  46



3 Hustle and flow (control)    48
Conditionals  48

The if statement  48 · The case Statement  51

Loops  53

Conditional Loops   53 · Iterating Loops and Blocks   54 · Statement 
Modifiers  55 ·  Controlling Loops  56

Exceptions  58

Handling Exceptions  58 · Raising Exceptions  61 · My Own Exception 
62 · Throw and Catch  62

4 The System Beneath    64
Filesystem Interaction   64

Writing to a file  66 · More file operations  67

Threads and Forks and Processes, Oh My!  68

Ruby thread basics   68 · Controlling threads   70 · Getting information  
from threads 71 · Processes, the other way to do stuff  72

For the Environment!  73

Environment variables and the like  73 · The command line and you  73 ·  
Ruby and its little corner of your computer  74

Win32 and Beyond  75

API  75 · The Registry  77 · OLE Automation  79

5 Looking Beyond Home    83
Networking and the Web  83

Socket Programming  83 · HTTP Networking  86 Other Network 
Services  92  ·  Web Services  95

It's Like Distributed or Something... 96

Data my base, please!  98



6 It's a Library!    101
String Manipulation  101

Instance Methods  101 · Regular Expressions  104

Date/Time  106

Dates  106 · Times  107 · Dates and Times  109

Hashing and Cryptography  109

Hashing  109  · Cryptography  110

Unit testing  111

Appendix A Links and the Like  116

Appendix B High Performance Ruby with C/C++  118





A Note

In the following book, I will be using Ruby 1.8.5 to test all the Ruby 
code.  Each example can be copied and pasted directly into irb/fxri 

and it should work famously.  I have done so with each one to make 
sure they run.

Each time I am showing output from irb, you will see a → character 
followed by the output.  Any method or variable name or 

code/system related text is typeset in this font for easy discernment 
from other text.  

Any time I have found it necessary to differentiate a class object 
from an instance object, I have erred on the side of standard 

notation and went with the form of Class#Object (even though it's 
very ugly and is not what the rest of the civilized world uses).





"I gotta go.  There's a dude next to me and 
he's watching me type, which is sort of 

starting to creep me out.  Yes dude next to 
me, I mean you."

Night-hen-gayle (bash.org)





0
What'chu talkin' 

'bout, Mister?

 there is a Chapter 0.  There is a little bit of introductory stuff we 
need to talk about before we set you loose on Ruby.  You wouldn't 

want to get psyched about a new gadget, get it home, and then figure out you 
need batteries,  a  grapefruit,  and the ability to  speak  three languages to even 
open the box would you? You would?  Well then answer me this: How would 
Ruby react to large, elastic monsters taking over an estuary?  You don't know 
the answer!?  Well, plainly we need to take a good, hard look at a few things 
before we turn you loose.

Yes

WHAT IS RUBY ANYHOW?

Ruby is an open-source, multi-paradigm, interpreted programming language (a 
bit of a mouthful I know!  I'm going to explain it, I promise!).  Ruby was created 
by Yukihiro "Matz" Matsumoto, a very fine Japanese gentleman who currently 
resides in Shimane Prefecture, Japan; Matz's work on the language was started 
on February 24,  1993 (commonly  considered the birthday  of  the language;  I 
hear that over in Japan they roll out a two-story cake and sing) and released to 
the public in 1995.  Ruby is often hailed as one the most expressive and concise 
languages available to developers today.  In that spirit of expressiveness, let's 
look at exactly what it all means.  Let us now eviscerate these verbal furbelows 
with conviction!

Open  Source  The  official  implementation  of  the  language  is  free  software 
distributed under the GPL and the Ruby open source license.  If you're unaware 
of what "open source" means, then look at it this way: Matz programmed the 



entire Ruby interpreter and library, then gave away the code he used to do it.  Since the 
source code is available, people can now take it and improve it. Many people take the 
code,  improve  it,  and  Matz  (and  his  crack  team  of  maintainers)  integrate  their 
changes back into the main source code.  The benefit of open source is chiefly that you 
get a lot more minds working on a project than a proprietary project (and typically for 
free to boot!).

Multi-Paradigm   Like to write code in a  functional style  a  la  Haskell  or  Scheme? 
That's cool; Ruby does that.  Really dig object orientation like Java or Smalltalk?  No 
problem; Ruby handles that, too.  Prefer to use a procedural (a.k.a. imperative) style 
like Forth or Ada?  Ruby can "get its procedure on" as good as any other language! 
Don't know what any of those mean but just really want to program?  Excellent!  Ruby 
is a multi-paradigm language because it doesn't constrain to a single programming 
mindset;  you can use any of the aforementioned programming paradigms with no 
problems in Ruby.  You can pick the one you prefer (or the easiest for you to learn) and 
go with it:  Ruby doesn't mind.  Unlike some other languages, it doesn't get jealous 
and give you "errors" if  you break it  off  with objects  and decide to go steady with 
closures instead.

Interpreted   If  you've  used  something  like  Assembly,  Pascal,  Fortran,  or  C/C++, 
you've used a compiled language.  "Compiled" means that you've had to run your code 
through a little compiler and it spits out some sort of native code that will run without 
any sort of interpretation by the computer other than by the operating system itself. 
This  can  become  time  consuming  as  your  project  grows  larger  and  larger,  and 
sometimes can even be a severe hindrance to productivity.  Oh, but there is another 
way!  Ruby is an interpreted language, which means that there is an interpreter that 
reads your  code  and  then  emits  native  code  to  the  operating  system.   Maybe  this 
diagram will make more sense...

There is a bit more to it than that (e.g. you have to coax Jeff out of his box), but that's  
the general concept.  Code goes in, Ruby plays around with it, program comes out. 
When running Ruby code, you have a few options.  The first option you have is   to 
create a file with your source code in it, and then tell Ruby to execute that file by giving 
it as a command line option to the ruby command.  Your next option is that you can 
use your editor's  Ruby runner (if  it  has  one) by  using their  shortcut;  for example, 
SciTE has this feature that you can use by pressing F5.  The last option is to use an 
interactive shell like irb or fxri; these shells give you a "Ruby prompt" at which you 
can  type  in  lines  of  Ruby  code  and  have  them  immediately  executed.   I  used  irb 

2   What'chu talkin' 'bout, Mister?

Figure 1: An overview of how Ruby handles programs.



extensively in writing this book because it allows speedier feedback than running from 
a file.   These prompts are possible because Ruby is a dynamic language ran in an 
interpreter.  

The interpreted nature of Ruby allows it to have many of the features that 
make it so great.  Compiled programs are not nearly as dynamic as interpreted ones 
because they don't (usually) allow for runtime change to code or the application itself. 
Because interpreted programs are simply, well, interpreted from their original source 
(or  a  slightly  compiled  bytecode),  they  can  allow  for  more  far-reaching  runtime 
interaction.   We'll  discuss  all  of  this  a  lot  more  later  as  these  features  reveal 
themselves;  now we need to make sure you actually have Ruby.   Otherwise,  these 
features will be like chasing the wind when it's running faster than you: meaningless!

INSTALLING RUBY

Sometimes installing a programming environment can be a pain; if you've ever tried to 
install a GNU compiler on Windows you know what I mean.  Fortunately, Ruby is 
relatively easy to install on most platforms.

Windows

Installing  on  Windows  is  a  snap;  simply  navigate  over  to  the  web  site  at 
http://www.ruby-lang.org and  click  on  the  "Ruby"  link  under  the  "Download" 
sidebar.  Then click on the "Install Ruby under Windows" link.  That page has a link to 
the  installer  that  you  need  along  with  instructions  on  how  to  install  it  (basically, 
download, run, and you're done).

To edit Ruby files, you simply need a text 
editor.  This could be something as simple 
as Notepad or as fancy as UltraEdit.  Ruby 
comes  with  a  fine  editor  named  SciTE 
which  will  properly  highlight,  open,  and 
save Ruby files for you; it also has the nice 
feature of running your programs for  you 
so  you  don't  have  to  poke  around  the 
command line to get them going.  There are 
other  Ruby  specific  development 
environments  (e.g.  FreeRIDE,  Arachno, 
Mondrian,  etc.),  but  these  environments 
are not necessary to do development (i.e. I 
don't use them).

If  you decide to simply use Notepad or 
something that doesn't have a feature that allows you to run your application from 

What'chu talkin' 'bout, Mister?   3

http://www.ruby-lang.org/


within it, then you need to find your programs using the command line and issue the 
Ruby command to run them.  For example:

ruby mycodefile.rb

I  suggest  simply  using SciTE to avoid  this,  but  sometimes this  is  a  necessary  evil 
(especially if you're already very comfortable with another editor).

Mac OS X

If you're rolling on Jaguar (10.2) or later, then you should already have some variant 
of  Ruby  on  there.   To  find  out  which  version  you  have  (and  to  make  sure  it's 
compatible with this book which is based on the 1.8 versions), type the following in 
Terminal:

ruby -v

That should give you a short message telling you which version you have installed.  If 
you have a 1.8 version installed, great!  If not, let's install one.

The  easiest  way  to  install  Ruby  is  going  to  be  using  DarwinPorts 
(http://www.darwinports.org/).  Go to their website, then to their download page and 
download  the  proper  .dmg  file  for  your  version  (e.g.,  for  Tiger/10.4  you  would 
download something like DarwinPorts-1.2-10.4.dmg).  Install that as you normally 
would.  Then open Terminal and enter the following:

sudo port sync
sudo port install ruby

It will download some files, compile some things, calculate the airspeed velocity of an 
unladen swallow, and then finally you'll have a working Ruby distribution!  Just run 
the above  ruby -v  command to make sure everything is in order.  If  that doesn't 
work, then go to the Darwin ports website and check their support and mailing list.

Editing Ruby files on Mac OSX can be 
done using something like Text Editor if 
you  like  to  keep  things  simple.   If  you 
require  a  little  more  out  of  your 
environment,  you  can  splurge  on 
something like TextMate (my Mac IDE 
of choice).  If you're a hardcore, UNIX-
or-die, console-only kind of person, then 
vi  or  emacs works perfectly fine,  and a 
lot  of  work  has  been  done  with  these 

editors to actually make them pretty usable Ruby development environments if you 
are so inclined to use them.

4   What'chu talkin' 'bout, Mister?

http://www.darwinports.org/


Linux

To assess whether or not you have Ruby already installed (and you very well may), 
type ruby -v on the command line.  If Linux can't find Ruby, then type which ruby 
on the command line.  If you are again confronted with the horrible fact that Ruby is 
not on your system, prepare to install it.  Fortunately, Ruby has widespread support on 
Linux, and depending on your variation of Linux/your environment, you will have to 
do one of the following.

Install from Administrator  If you are not the administrator of your machine, you 
may have to throw yourself at the mercy of your systems administrator.  Beg him or 
her to install it for you.  Offer them pastries.  Tell them that you will urinate on their 
desk if they don't install it.  Whatever it takes, get Ruby installed!

Install  from  Package  To  install  from  a  package,  you  will  need  to  consult  your 
distribution's  documentation.   Each  distribution  handles  these  sorts  of  things 
differently, but if your distribution simply doesn't have a package you have options. 
First,  check  unofficial  repositories  such  as  Dag's,  Mind's,  Shadoi's,  or  Debian-
Unofficial (or the tons of others that Google will turn up if you ask it nicely).  If you 
don't have any luck there...

Install from Source  Installing from source is some people's first instinct.  You do get 
a smidge better performance, for sure, but I'm hasty and like to get things done as 
quickly as possible.  I'd rather just drop a package in and go.  If you're a masochist or 
simply can't find a package, you can install from source.  First, go to http://www.ruby-
lang.org and  download  the  source  archive.   Then,  extract  it  and  enter  the  source 
directory:

tar zxvf ruby-1.8.4.tar.gz
cd ruby-1.8.4

Poke around in there a bit; you might want to read the license or README to make 
sure that there aren't any gotchas for your distribution of Linux.  Then, you need to 
configure, build, and install it:

./configure
make
make install

You should be good to go at this point.  Type ruby -v to make sure that it's installed 
properly.

Editing Ruby files on Linux is as simple as using a plain text editor like gEdit 
or your favorite console editor, such as vi, emacs, or nano, or one of their X Windows 
counterparts like xemacs.  There are also more robust environments, such as jEdit and 
Arachno Ruby that you can acquire, but they are not required.

What'chu talkin' 'bout, Mister?   5

http://www.ruby-lang.org/
http://www.ruby-lang.org/


LET'S TRY HER OUT!

Let's give this whole Ruby thing a try.  You can either use irb or fxri to get instant 
feedback or type the source code in a file and use Ruby to execute it.  If you want to use 
the former, either type irb on the command line or find fxri in the program group for 
Ruby.  If you want to simply type it in and execute it, then open your favorite editor 
and let's get cracking.

puts "Hello, world."

This  is,  of  course,  the prequisite  for  any  programming  book.   You should've  seen 
"Hello, world." if you're using one of the interactive shells; if you're placing this in a 
file, save the file as something like hello.rb and then type ruby hello.rb to execute it. 
Now, let's make this a little more interesting.

puts "Hello, world.  What is your name?"
myname = gets()
puts "Well, hello there " + myname + "."

Save the file again and run this (or type it in your little interpreter); you should see a 
greeting, be asked for your name, and then greeted by name.  If you didn't figure it out,  
puts makes text come up on the console and gets gets text from the user.  Now that 
you've got a little Ruby under your belt, you're good to go on Chapter 1.

This Chapter   

You learned a little about Ruby and how to install it.  You learned...

• the history of Ruby and where it came from.

• the gist of what Ruby is and how it works.

• how to install Ruby.

• a little bit of Ruby.

6   What'chu talkin' 'bout, Mister?



1
Welcome to Ruby.

This section aims to introduce the syntactic sugar and linguistic misfortunes of Ruby 
in the quickest manner that will still allow for a full education on the subject.  If you 
rate yourself a Ruby guru, hate language tutorials for one reason or another, or if you 
stayed  at  a  Holiday  Inn  Express  last  night  (or  thought  about  it  but  decided  their 
overpriced accommodations weren't for you), then you may merrily proceed on to the 
next section.

BASIC CONCEPTS OF RUBY

Ruby is  an  object-oriented language,  but before you skip this section because  you 
think  you  know  what  this  is  all  about  because  you  have  used  C++  or  some  other 
unfortunate excuse for an object-oriented language, then please pause and at least 
read the following sentence.  In Ruby, everything you manipulate will be an object. 
Everything.  Even the results of operations on said objects are objects; this approach 
differs from C++ or Java where primitive types exist or some statements do not return 
a value.

If you have never delved into object-oriented programming (or programming 
at all), then that is a different story altogether.  When writing Ruby code, or object-
oriented code in general,  the idea is  to create models in your code that render the 
process you are trying to go through in code.  For example, if  you were creating a 
cookbook application, you would probably want to create a list of recipes (my skills of 
deduction are amazing, I know).  To model that in a not-so-object-oriented way, you 
would most likely use a series of list structures of some sort to hold the various sorts of 
data with a synchronized way to track the position of each list or some such nonsense. 
Object-oriented  programming  simplifies  this  and  allows  you  to  create  classes  and 
objects  to  model  the needed  components.   Using  our example,  you could  create  a 
Recipe class with string attributes  name and  author and a hash or array attribute of 
ingredients.   A class's purpose is to  model some  thing  in your application; classes 
create the "prototype" for the nouns in your programs: objects.  Class instances, or 
objects  (the  terms  are  interchangeable),  then  take  that  prototype  and  put  it  into 

Welcome to Ruby.   7



action.  In our example, objects could be created for each recipe in the list that would 
be instances of the class  Recipe,which would in turn could hold data and do things 
related to being a recipe (i.e., hold a list of ingredients, add ingredients to that list, and 
so on) and enforce constraints that would be enforced on a normal recipe (i.e., only 
allow numeric values for ingredient amounts, make sure there is a name for the recipe, 
and so on).     

TYPES IN RUBY

Just because everything is an object in Ruby does not mean that everything is generic 
(in the sense that specialized functionality does not exist) or that there are no "built-
in" classes.  Ruby provides a number of built-in classes which act as building blocks 
for the all of the components of your application.  These types differ from those in 
many other languages in that they all  originate from the same class originally:  the 
Object class.  This hierarchy means that there is only one "base" type rather than a 
number of primitives like there are in languages such as C.  What follows is a walk-
through of how these types differ and what they can offer you as a developer.

Strings

The first of these types that we will look at are strings, which are simply sequences of 
bytes that represent a sequence of characters.   Strings can be formed a number of 
ways, but the most common is likely to be using a string literal.  A string literal is a 
constant string that is created by enclosing it in single or double quotes.  For example:

puts 'Hello, Darling.' →   Hello, Darling.
puts 'What\'s  up?'  →   What's up?
puts "A\tTab."   →   A tab.

Wait  a  minute!   What  are  those  backslashes?   Those  are  escape  sequences,  a 
backslash followed by a character to create normally unprintable characters (i.e.  in 
this example I used \t to create a tab character but you can also use others to create 
things  like  new  lines  and  vertical  tabs).   I  said  unprintable  because  in  the  other 
example, I used \' to create a single quote character; this character would normally be 
unprintable because it is contained in a set of single quotes and would effectively close 
the set of quotes causing an error.

Now, if you noticed, I used single quotes for some of the strings and double 
quotes for others.  There is a difference between the two notations.  Single quoted 
strings are quite silly and have a very limited set of escape sequences they can use (as a 
matter of fact, only single quote and backslash are allowed) and are typically useless 
unless performance is a concern for you (and turning double quoted strings to single 
quoted  strings  should  probably  be  the  last  thing  you  try  when  improving 
performance); double quoted strings, on the other hand, offer far more functionality 
in the way of interpolation.  Firstly, they offer far more escape sequences.  As noted 
above, you can use \n to create a newline character, \t to create a tab character, and so 

8   Welcome to Ruby.



on;  below is  a  table of  all  the available escape sequences you can use with double 
quoted strings (there are quite a few).

ESCAPE SEQUENCES
\a   Bell alarm \f   Form feed

\???   Octal value \n   New line

\x??   Hex value \r   Return

#{???}   Value of ???, where ??? is a   
  Ruby expression \s   Space

\e   Escape \t   Tab

\c?
\C-?

  Control-? \v   Vertical tab

\M-?   Meta-? \b   Backspace

\M-\C-?   Meta-Control-?

Looking at that table, you may have noticed that double quoted strings also 
offer another interesting feature: expression interpolation.  As fancy as that sounds, it 
simply means this: you can insert the value of pieces of Ruby code into strings directly. 
Remember that everything in Ruby is an object, even the results of expressions.  That 
means you can do this:

"Inches/yard: #{12*3}" →   Inches/yard:  36
"#{"Tora! "*3}"   →   Tora! Tora! Tora!

The second example is confusing, unless you remember that everything is an object in 
Ruby (yes, even string literals!  They are of class  String.).   Since the string literal 
creates  a  String  object,  you  can  act  on  it  just  like  any  other  object.   In  this  case, 
multiplying a string by 3 simply does what you would think: makes three copies of the 
string.

Another,  less  awesome  method  of  creating  strings  is  using  a  special 
delimiter: %Q or %q.  The way this constructor works is to follow %Q or %q with any non-
alphanumeric, non-multibyte character.  For example:

%q{Hoagies & grinders!} →  Hoagies and grinders!
%Q;#{"Navy beans! "*3}; →  Navy beans! Navy beans! Navy beans!

Note that  %q acts like a single quoted string and  %Q acts like a double quoted string. 
Just associate them by size: little q, one quote but big Q, two quotes.  

Yet  another  way  strings can be created in Ruby is  the use of  the verbose 
eyewart  known  as  here  documents  (Perl  programmers  rejoice!),  also  known  as 

Welcome to Ruby.   9



"heredocs."  These unfortunate language constructs create a string by specifying a 
delimiter after a set of << characters to start the string and putting the delimiter on a 
line of its own to end it.  For example:

my_string = <<MY_STRING
This is a simple string that is 
pre-formatted, which means that the 
way  it is formatted here including 
tabs and newlines will be duplicated
when I print it out.

MY_STRING

The final method that can be used to create a string instance is to simply use 
the to_s method of an object.  Many  objects simply output the standard results for 
this method (i.e. their class name and instance id or something similar), but others 
provide  better  faculties.   For  instance,  Fixnum will  actually  return  a  string  of  the 
number value rather than simply a big blob of Ruby data.

Numbers

The second type we will  look at is Ruby's built-in classes for numbers:  Fixnum and 
Bignum.  When creating a numeric object, any integer that is between (-230) and (230 - 
1)  is  assigned  to  an  instance  of  Fixnum and  anything  else  outside  that  range  is 
assigned to an instance of Bignum; Ruby does this assignment transparently so there is 
no need to worry which one to use if you create a bookkeeping application for yourself 
and your bank balance (like mine) sits below -230 constantly.

Integers are created by entering the number you wish to use without quotes 
(lest it become a string).  The particular format depends on which numerical base you 
plan  on  using.   Ruby  supports  standard  decimal  (base-10)  operations  but  it  also 
support  operations  on  octal  (base-8),  hexadecimal  (base-16),  and  binary  (base-2) 
numbers.  For example:

-123456789 →   -123456789 # Fixnum

0d123456789 →   1234567890 # Fixnum

1234323424231 →   1234323424231 # Bignum

0x5C1 →   1473 # Hex

01411 →   777 # Octal

1_90_33 →   19033 # Fixnum

Notice that Ruby ignores underscores in numbers (some people choose to use them in 
place  of  commas  for  larger  numbers  to  enhance  readability).   The  examples  also 
illustrate the various base notations.  To create a binary number (base-2), prefix the 
number with 0b;  to create an octal  number (base-8), prefix the number with 0;  to 
create  a  hexadecimal  number  (base-16),  prefix  the  number  with  0x.   To  create  a 
standard,  base-10 integer,  either  simply  type  the number as  normal  (i.e.  1678)  or 
prefix it with 0d (i.e. 0d1678). 

10   Welcome to Ruby.



In addition to integer types, Ruby also has support for a Float type.  Float 
numbers  hold  numbers  that  are  fractional  (i.e.  they  have  a  partial  value  that  is 
expressed in decimal form).  For example:

1.5 →   1.5
1.0e5 →   100000.0
1.e5 →   !NoMethodError

Each side of the decimal point must contain a number.  When notating floats using 
scientific (or condensed) notation, you must place a 0 next to the decimal point or 
Ruby in its silliness will  try to execute a method named (for example) e5 on class 
Fixnum.

Since numbers are objects (i.e. since everything is an object in Ruby) they 
also contain methods that can act on them.  You can get a number's size with the size 
method, convert a number to a string using the to_s method, and many others:

-4.abs →   4 
6.zero? →   false

The above methods are obviously named (the abs method gets the absolute value and 
the zero? returns true if the number is zero), but they are not the only methods that 
are offered.  Check the Ruby API Documentation for more information.

Numbers also offer methods that may not seem like methods at first glance: 
the arithmetic operators.  Here are some examples:

2 + 2 →   4 
6 / 3 →   2
-4 * 2 →   -8

A full listing of these operators and their function is available below.  A quick tip: if 
you've ever programmed in another language, chances are they are the same (unless 
you've been programming in some sort of willy nilly non-mathological language). 

ARITHMETIC OPERATORS
+   Addition

-   Subtraction

/   Division

*   Multiplication

()   Order of operations (i.e. group expressions to force a certain order of operations)

%   Modulus (i.e. the remainder for those not in the know)

Welcome to Ruby.   11



COLLECTIONS

It is a great thing to be able to push data around in its singular form, but everyone 
knows that collections are where the party is at (at least that's what MTV says).  I 
think God once said that it's not good for data to be alone, and Ruby provides a few 
ways to facilitate this.

A collection (sometimes called a container) is an object that holds a group of 
related objects; this relation could be by type (i.e. all of them are strings), purpose (i.e. 
all of them are names), or by favorite cheeses (mine is provolone).  A collection can be 
used to house a number of data items, keep them organized, and perform operations 
across all its members; each member (or element) of a collection is also a separate, 
visible object that can be operated on (i.e. it can still call methods, be added to and 
subtracted from, etc.).

The Range 

The first  and  most  primitive  is  the  range.   Ranges  hold  a  sequential  collection  of 
values, such as all numbers between 1 and 9 or the letters from A to Z.  A range is 
created by placing a series of dots (or periods or decimals or whatever it is you kids call 
them nowadays) between the lower and upper limit of the range.  For example, if you 
were creating a roleplaying game and wanted to set the possible ranges for the height 
of each race (in inches), you could type:

human = 48..81
elf = 40...68
grotesquely_huge_guy = 120..132

Ranges  can  use  either  two  dots,  which  indicates  an  inclusive  range  of  all  values 
including the beginning value and the end value, or three dots, which excludes the last 
value.  This seems backwards at first glance, but in truth that third dot is so fat that it 
pushes the last element out of the range.  I am not kidding; crack open a debugger and 
find out for yourself.  For example, the range 1...7 would produce a range like this:

On the other hand, the range 1..7 would produce this:

Now that you can get the right values in a range, you may want to actually do 
something with them.  Ranges offer a  number of ways to test  and compare them. 
Firstly, you can compare ranges to one another using the  == operator (more on this 

12   Welcome to Ruby.



operator  and  others  later)  or  the  eql? method.   If   you  were  to  write  software  to 
manage bake sales (which I hear that's a booming market in the software industry 
right now) then you may write some test code to test the probability of the range of 
good and bad cookies you can expect from a batch:

good_cookies = 1...3
bad_cookies = 1..3
burnt_cookies = 1..3

puts(good_cookies == bad_cookies) →   false
puts(good_cookies.eql?(burnt_cookies)) →   false
puts(bad_cookies == burnt_cookies) →   true

Ranges are considered equal if their beginning and end values are the same, but note 
that even though the good_cookies and bad_cookies shared the same beginning and 
end value in code, the values differed.  The values were changed by the value of the 
inclusive flag (remember the two dot-three dot thing?).  The values for good_cookies 
are [1,2] while bad_cookies holds [1,2,3].

Ranges also offer a way to test whether or not a value is contained within a range 
using === or the include? method.  For example, if you and your co-worker guessed a 
number of good cookies, but wanted to see if it was within the probable range of good 
cookies, you could do this:

my_guess = 2
his_guess = 19

puts(good_cookies === my_guess) →   true
puts(good_cookies.include?(my_guess)) →   true
puts(good_cookies === his_guess) →   false

The include? method will return any value that is contained with the range of values 
in the range (i.e. it would return true if you tested 2.44564 against bad_cookies); if 
you're feeling a little alternative, you can also try include?'s alias member?.

The Array 

The second built-in collection is the array, an integer indexed and ordered collection of 
elements.  If you have had any introductory computer science course, this concept of 
an array should not be foreign to you but Ruby's implementation may seem slightly 
unfamiliar to you.  While the indexing is zero based like C/C++ and Java (i.e. the first 
element  is  referenced  at  index  0,   the second  element  1,  and  so  on),  unlike  these 
languages, the elements in a Ruby array do not have to be the same type; nor does the 
type of the array have to specified before it is initialized for use.  So, without thought to 
types, you could end up with an array that's something like this:

Welcome to Ruby.   13



In Ruby, literal arrays can be created and stuffed with values in a variety of 
fun and interesting ways:

its_so_empty = []
oh_so_empty = Array.new
hello = ['ni hao', 'bonjour', 'hi', 'howdy']
random_types = [13, 'napkin', (1336 + 1).to_s]

An array can be initialized with values of any type, even variables, values returned 
from methods, literals such as quoted strings, or nothing (to create an empty array). 
This  is  handy  mostly  for  literal  values,  but  Ruby  offers  a  few  more  methods  for 
creating arrays that are more convenient and certainly more Rubyrific.  Strings offer a 
special way to create arrays from their contents.  Let's say you were writing haikus and 
wanted to make sure each line (which is conveniently filled with one syllable words) 
matches the ol' "5-7-5" paradigm by splitting the line into an array so you can count 
the elements:

my_haiku = %w( my dog digs it here\n )

→  ["my", "dog", "digs", "it", "here" ]

my_haiku = %w( he is nice to me & cats\n )

→   ["he", "is", "nice", "to", "me", "&", "cats"]

my_haiku  = %W( but he ate #{(2*3)/6} once )

→   ["but", "he", "ate", "1", "once"]

my_haiku  = %w( but he ate #{(2*3)/6} once )

→   ["but", "he", "ate", "#{(2*3)/6}", "once"]

Oops!   A  string  wrapped  in  the   %W delimiter  acts  like  a  double  quoted  string:  it 
performs  string  interpolation  and  extended  escape  sequence  substitution,  but  %w 
delimiter acts just like a single quoted string: it  only allows a subset  of  the escape 
sequences to be used and does not facilitate interpolation.  Some are confused by all of 
this poppycock, but it's very easy to remember: Bigger is better (unless you don't need 
all the fancy features or you have some sort of religious convictions against double 
quotes and/or capital W's).

The last way to form arrays that I would like to mention is the to_a method of 
some objects.  This method converts an object or (rarely) one of its members to an 
array.  For example, ranges support this method:

14   Welcome to Ruby.

Figure 2: Look, ma! No types!



my_range = 1..10

→  1..10

my_dazzling_array = my_range.to_a

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Many  objects  implement  this  method;  it  is  a  convenient  way  to  get  an  easily 
manipulatable data structure from some silly classes that are difficult to work with. 
You may consider peeking in the Ruby API documentation to see if the object you 
wish to use this method with does indeed implement it.

Now that you have an array, maybe you want to add to it.   Elements can 
easily be added to an array by simply assigning a value to a non-existent index; for 
example:

my_dazzling_array[10] = 11

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

my_dazzling_array[12] = 12

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, nil, 12]

If a gap exists between indexes of the last element in the array and the newest added 
element,  Ruby  places  nil (i.e.  the  equivalent  of  null in  other  programming 
languages;  it  represents  a  complete  lack  of  value)  in  the  gap  elements  (look  at 
my_dazzling_array[11] above).  If  you simply want to add an element to end of an 
array,  then  you  can use the  << operator,  the  push method or  certain  forms of  the 
insert method.  For example:

my_dazzling_array.push(15, 16)

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16]

my_dazzling_array.insert(-1, 17)

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17]

my_dazzling_array << 14

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14]

The push method allows you to push one or more elements onto the end of an array; 
each element should be provided as a parameter to the method.  The insert method 
allows you to insert elements at (the specified index + 1); in the example, I used -1 to 
add elements to the end of the array (i.e. -1 moves from the end of the array back one 
element to the last element.  Adding an element after the last element would effectively 
add it to the end.).  This method probably is not the best, but it can be used when the 
same method needs to insert elements at various places in the array (including the 
end).   The  << operator  allows you to  push  specified elements  on to  the  end  of  an 
existing array; I pluralized element because several of these "appends" can be chained 
together to add numerous elements to the end of an array.  For example:

Welcome to Ruby.   15



my_dazzling_array << 20 << 21 << 22

→  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 22]

Now that you have data in your array, what are you to do with it?  I personally 
like to admire my data, pride myself on my ability to harness all that is the array, and 
thrust my fist into the air yelling, "I AM SPARTACUS, LORD OF THE ARRAY!" 
Then my wife looks at me like I am crazy, it gets all weird, and I get back to work.  I 
suppose that may or may not work for you; most people opt to simply use their array to 
hold stuff and call it when they need it (which is not nearly as fun).  To make use of an 
array element's value, you simply reference the desired element by index in the form 
array_name[index].  For example:

puts my_dazzling_array[0]

→  1

index = 2

my_dazzling_array[index]

→  3

my_dazzling_array[0..2]

→  [1, 2, 3]

Notice that when referencing array elements, you can reference a single element with 
an integer or use a range to reference a number of elements.  Remember, because 
array  indexing  is  zero  based,  referencing  index  0 is  actually  referencing  the  first 
element.  Also, be sure that when you pass an index, that it is an integer or range; if  
you do not, Ruby will throw a  TypeError (which will in turn crush your soul).  This 
seems like a silly problem (and an even sillier consequence!), but it could show up if 
you  were  (for  some  reason)  reading  indexes  from  sockets  or  files  (which  reads 
everything in as strings so you would have to convert them which you'll learn how to 
do  later).   This  method  for  referencing  array  elements  operates  just  like  the  at 
method:

puts my_dazzling_array.at(0)

→  1

Another method, fetch, can also operate in this manner, but fetch can also specify a 
default value to return if the specified index is not found.  

puts my_dazzling_array.fetch(999, "Not found!!")

→  Not found!!

Yet  another  method,  values_at,  can  also  operate  just  like  at,  fetch,  and  the  [] 
operator, except this method can take a number of indexes to fetch and return as an 
array.

16   Welcome to Ruby.



puts my_dazzling_array.values_at(0, 1, 2)

→  [1, 2, 3]

The last ways that I would like to share to retrieve elements are the methods pop and 
shift.  The  pop method grabs the last element in the array and removes it from the 
array; the shift method grabs the first element from the array and removes it shifting 
all other elements back one index.

my_dazzling_array.pop

→  [1, 2, 3, 4, 5, 6, 7, 8, 9]

my_dazzling_array.shift

→  [2, 3, 4, 5, 6, 7, 8, 9, 10]

So now you have an array, you have data in it, but maybe you are sick of that 
third element.  He just keeps giving you crazy looks or eying your wife and you just 
want to take him out or possibly extirpated.  Well, fortunately Ruby can take care of that 
little problem, and let's  just say it  ain't  pretty.   The  delete_at method deletes the 
element at the index specified as a parameter and returns the value of that element. 
For example:

puts my_dazzling_array.delete_at(1)

→  2

my_dazzling_array

→  [1, 3, 4, 5, 6, 7, 8, 9, 10]

Another method that arrays offer to delete items is the delete method (big 
surprise, huh?).  This method deletes and returns the value that is  referenced as a 
parameter rather than the index like delete_at.  For example:

puts my_dazzling_array.delete(4)

→  4

my_dazzling_array

→  [1, 2, 3, 5, 6, 7, 8, 9, 10]

puts my_dazzling_array.delete(1337) { "Wrong!" }

→  Wrong!

Note that the item with the value of 4 was deleted rather than the index 4.  Also note 
that the delete method offers the option for a "default" value to return if the specified 
value does not exist in the array; the last example is a demonstration of this feature. 
The value returned by the block of code between the braces will be the value returned if 
the item is not found (I talk more about these kinds of code blocks later on; if you're 
confused, curious, and impatient, look at page 31).

Welcome to Ruby.   17



The Hash 

The last  collection type that Ruby offers is  the hash (also sometimes known as an 
associative array or dictionary); hashes are collections of values of any type indexed by 
other values of (almost) any type rather than solely numbers like arrays (though you 
can use numbers for hashes also).  For example, they can be indexed by strings; if you 
had a hash called thathash, you could call out its keys by name.

I say they can be keyed by almost any type because indexes (called keys in hashes) 
have two requirements: they must implement the .eql? method and they must have a 
constant  (or  constantly  updated  using  the  rehash method)  hash  code.   These 
requirements stem from the way hashes handle indexing and looking up values by key. 
You can find a fine, technical explanation of this process of looking up and hashing 
and what have you in other volumes, but let us suffice now to say that the hash code is 
the hash's method for comparing and finding keys and the like, so it would not be wise 
to let that get thrown all willy nilly by a rogue or inaccurate hash code (strings are 
exceptions since Ruby makes a copy of them rather then references them; this way the 
value cannot be altered and the hash code changed without the hash knowing about 
it).

To create a new hash, you simply bracket nothing or a set of key value pairs 
(indicated by the "=>" combination) between a set of braces.  If  you place nothing 
between the braces (or you call the  Hash.new method), then an empty hash will be 
created, but let's say you wanted to create a giant hash of the names of everyone that 
you know who is a wombat and where they live.  You could do so like this:

my_wombats = { 'Wally Wombat' => 'The Jungle St.',
'Wilma Wombat' => 'The House on the Corner',

'Sam' => 'Notawombat Way', 'Mump' => 13 }

Okay, so maybe it's not a giant hash (yet).  Anyhow, Ruby doesn't mind whitespace 
(spaces, tabs, and the like) or newlines (or the lack thereof) in the hash definition, so 

18   Welcome to Ruby.

Figure 3: The hash, illustrated.  Those darn felt tipped pens.



long as you put a comma between each entry.  I used string keys in my example, but 
any object can be used as long as it meets the requirements for keys (listed above).

Ruby also  offers the  new method for  creating hashes;  the  new method for 
hashes  varies  slightly  than  what  would  be  expected.   One  would  expect  that 
parameters provided to new would become the values of a hash, but in this case it takes 
a single parameter which becomes a default value if a nonexistent key is referenced (or 
if the default method is called).

new_hash = Hash.new("Not here!")

new_hash['non-existent key']

→  Not here!

Keys can be added to a hash by simply defining them; continuing from the 
above example, let us assume that you met a new wombat at the supermarket:

my_wombats['Wombie McWombat'] = '123 That Street'

Note you don't redefine the hash or enclose anything in brackets or braces; you don't 
have to call any silly methods (you can use the store method, but why would you?) or 
use any operators that seem foreign; you simply assign a value to the key.

So now that you have this fine hash o' wombats, what can you do with it?  To 
reference a hash value, you can use the  fetch method with the key as a parameter 
(lame!) or  simply  reference  it  similar  in  an array-like  form:  hash_name[key].   For 
example, if you were throwing a wombat party and wanted to invite all your wombat 
friends,  but  you  couldn't  remember  Wally  Wombat's  address,  you  could  print  the 
value of his address like this:

puts my_wombats['Wally Wombat']

→  The Jungle St.

Hashes also offer the values_at method, which allows you to provide numerous keys 
and receive their values in an array.  Values in hashes have to be called using these 
methods  (fetch,  [key],  or  values_at);  hashes  do  not  offer  methods  like  pop in 
arrays.  Hashes offer shift, but it simply returns the first element as an array which 
contains the key in one element and the value in another; this method and a couple of 
others are not very useful if you simply want the value of elements.  Oh sure, hashes 
offer a myriad of methods which allow you to do different things with the elements of 
a hash (i.e. the to_a method which changes the hash to an array, merge to merge two 
hashes, replace to replace one hash's values with another's values, etc.), but there are 
not a whole of options when it comes to grabbing elements from a hash.  Hashes lack a 
lot of bling to be honest.

Ruby also offers a few methods that test elements in a hash; these are helpful 
to grab information about the hash without traversing the whole hash.  For example:

Welcome to Ruby.   19



my_wombats.has_key?('Wilma Wombat')

→  true

my_wombats.has_value?('Lamps and pandas')

→  false

my_wombats.empty?

→  false

The method names obviously explain what they do, but I will explain them a little bit 
anyhow.  The  empty? method checks whether or not any elements exist in the hash; 
this does not check the values of the hash, so if there is an element which is empty it 
returns false.   The  has_key? method checks the hash to see if  the key passed as a 
parameter exists;  this is  probably more safe than checking they key for the default 
value or nil.  The has_value? method checks the values of the hash to see if it exists in 
one of the elements.   This method is not particularly useful (since it  does tell  you 
which key has the value), but it can be useful if you want to make sure that any key has 
this  value.   There  are  a  lot  of  synonyms  for  has_key? (member?,  key?, etc.)  and 
has_value?  (value?,  etc.);  check  the  Ruby  documentation  for  a  full  list  of  these 
methods; maybe one of the synonyms will be easier for you to remember.

Hashes  also,  of  course,  offer  methods  to  delete  elements.   To  delete  an 
element, simply call the  delete method and provide the key you wish to delete as a 
parameter.  Let's say that you had a falling out with Wilma Wombat (she got a little 
tipsy at the Wombat New Year party and vomited on your new eel skin Prada shoes) 
and you now want to delete her from your list of friendly wombats; you could do so like 
this:

my_wombats.delete['Wilma Wombat']

→  The House on the Corner

When an element is deleted, its value is returned.  This works great if you know exactly 
which keys you want to delete, but let's say that you get tired of how wombats smell 
(the smell of stale gin and guava juice can be rather unwelcome in the morning).  You 
want to completely blow away the whole hash, but it seems silly to go through each 
key and call delete.  Well, fortunately Ruby delivers:

my_wombats.clear →  {}

my_wombats.empty? →  true

When the clear method is called, the newly emptied  hash is returned; aren't you glad 
that you don't have to deal with those darn wombats anymore?

VARIABLES AND THE LIKE

Now that we've gone over all  the basic objects you have to work with (at least the 
important ones), we should probably talk about how to do something with them.  It 

20   Welcome to Ruby.



would be silly  to learn about what you have to work with without  working with it 
(unless of course you were learning about poisonous snakes or Malaysian sloths); to 
do  anything  practical  with  an  object  you  probably  need  to  store  a  reference  to  it 
somewhere like a variable or a constant.  We did this wantonly in our discussion of 
types,  but  now  may  be  a  good  time  to  go  over  the  finer  points  of  assignment, 
expressions, and other fun party games with objects.

In  the  examples  for  working  with  the  standard  Ruby  types,  I  often 
demonstrated variable assignment without really explaining exactly what was going 
on.  It seems obvious what was going on: left value (a.k.a. lvalue) is set equal to the 
value of the right value (a.k.a.  rvalue).  Seems like second grade math, right?  But 
notice that I said reference in the previous paragraph.  Variables are, in elementary 
terms, names for values that live in the memory of your computer.  In Ruby, variables 
point to a location in memory.  If you point a pointer to another pointer, your point to 
the same location in memory.

If you don't really get it, perhaps an example will work a little better to illustrate what 
references mean in practice:

Welcome to Ruby.   21

Figure 4: Variables as references.  Your computer's memory looks suspiciously like a 
group of circles.



first_var = "i hold a reference"

→  i hold a reference

second_var = first_var

→  i hold a reference

second_var.chop!  # Chops off the last character of the string

→  i hold a referenc

first_var

→  i hold a referenc

Wait a second!  I modified second_var!  Why is first_var different now?  This the 
where the idea of a reference comes into play: variables are not objects but references 
(or pointers) to objects which live in the magical ether beyond (or the heap; whatever 
you  kids  call  it  nowadays).   References  (and,  in  turn,  variables)  merely  point  to 
objects;  they  do  not  hold  the  actual  objects  themselves.   When  you  reference  a 
reference, it does not duplicate the object: both references point to the same object.  If 
you want  to duplicate  the object  (i.e.  create another  copy  of  the object  in  another 
object rather than simply referencing it), you can use the .clone or .dup method on 
objects which offer it.

While  assignment  of  the  rvalue-into-lvalue  sort  is  simple  enough  to 
understand due to its readability, there are other forms of assignment and all manners 
of bit twiddling and binary bruhaha you can pull on variables.  One such ruckus you 
can stir up is chaining assignment.  In a normal assignment, there is one lvalue and 
rvalue;  after  the  assignment  the  lvalue  equals  the  rvalue.   When  you  chain 
assignments though, magic happens (well, not really).  For example:

left = 5 →  5

left = middle = 7 →  7

left →  7

middle →  7

In this example, the chaining results in two lvalues and one rvalue.  This seems tame 
and practical  enough; if  you need to assign two variables the same value, you just 
place them as lvalues to the desired rvalue.  Where it can get crazy is using something 
like this statement:

t = h = i = s = i = s = c = r = a = z = y = 100

→  100

Now every variable to the left of the final rvalue ( t, h, i, s, i, s, c, r, a, z, 
& y) is set to the final rvalue (100).  Though it seems like all the variables are being 
set in parallel, in actuality Ruby assigns them working from right to left (i.e. y is set 
to 100, z is set to y, and so on).  Ruby does offer setting variables in parallel, but it is 
accomplished using a slightly different form:

22   Welcome to Ruby.



p1, p2 = 1, 2 →  [1, 2]

p1   →  1

p2 →  2

Note that Ruby returns an array of the assigned values.  This form is a great method 
for swapping the values of variables (since they are actually set in parallel).  You can 
also make use of this form with an array:

rvalue = 0 →  0

a, b = rvalue →  0

a →  0

b →  nil

rvalue = [1, 2, 3, 4, 5] →  [1, 2, 3, 4, 5]

a, b = rvalue →  [1, 2, 3, 4, 5]

a →  1

b →  2

Any array can be assigned to a list of variables; as shown in the example, Ruby ignores 
any extra elements in the array past the number of variables specified to assign to. 
This is useful if a method returns an array but you don't necessarily need anything past 
the first few elements.  Notice that earlier in the example that any lvalues without 
corresponding rvalues are simply set to nil.  Arrays can also be assigned in parallel in 
nested  assignments  ;  Ruby  is  smart  enough  to  pick  apart  your  expressions  into 
individual objects and try to assign them (which is a big step up from languages like 
C++ and C#).  For example:

a, (b, c), d = 10, 11, 12, 13

→  a == 10, b == 11, c == nil, d == 12

a, (b, c), d = 10, [11, 12], 13

→  a == 10, b == 11, c == 12, d == 13

Much  like  the other  form  of  parallel  assignment,  Ruby  substitutes  nil for  lvalues 
which do not have a corresponding rvalue.  The first example's c does not get assigned 
because it is in an array with b and the corresponding rvalue is not an array.  In this 
case, Ruby assigns the first element the value.

Another form of ridiculous rvalue rigormoralitry is the additive assignment 
operator  (+=)  and  the  subtractive  assignment  operator  (-=).   These  forms  are 
somewhat  similar  to  (but  also  replace)  the  ++ and  -- operators  seen  in  many 
programming languages.  The  -= and  += operators are delightful pieces of syntactic 
sugar that make adding and subtracting objects and assigning the returned value to 
the initial object a breeze.  For example:

lumps += 2 # lumps = lumps + 2

→  2

Welcome to Ruby.   23



pie += lumps # pie = pie + lumps

→  2

lumps -= pie # lumps = lumps – pie

→  0

As you can see, these shortcuts allow you to accomplish the same thing in a whole lot 
less typing (every programmer's dream, right?).  Also note that these operators work 
on more than numbers; anything that uses the + and - operators can use them since 
these syntactic sugar lumps merely wrap these operators.  This means that anything 
that happens during normal use of these operators (i.e. certain objects perform extra 
work when adding or subtracting that is built in or that you specify) will still happen.

What if  you don't  want to be able to assign to an object?  It's a rare case 
indeed unless you're trying to work a bug out or if you simply like to raise unhealthy 
amounts  anger  within  yourself  because  you  happen  to  be  the  Incredible  Hulk. 
Freezing  an  object  is  useful  if  your  program  is  acting  wonky  and  spitting  out  an 
abnormal variable, but from what you can see, it should be working normally.  So, you 
would simply freeze the object at the last line of code you see  behaving normally:

# Lots of code here...
my_crazy_object = why_do_you_hate_me?
my_crazy_object.freeze

# Even more code...
my_crazy_object = abnormal_value

→  TypeError!  can't modify frozen object

This seems like a cool trick you'd use often, but it's really not.  I suggest not using it 
unless you absolutely need to and you have permission from your mom and dad first.

Another crafty piece of syntax you may spot when looking at others source 
code or examples in books or the web is something that may look like this:

my_string =~ /\sstring\s/

What's that tilde for?!  And what's with the slashes and the literal and the escape 
sequence outside of a string?!  This is what's called a regular expression, a pattern that 
is used to match string or portions of strings in order to execute some manner of string 
manipulation.  Ruby offers a very robust regular expression facility (which we will 
touch more on later), but right now let's suffice to say whatever is between the slashes 
will be matched and assigned to the lvalue when the =~ operator is used.  For example:

my_string = "my string is looooong"

my_string =~ /\sstring\s/ →  2

my_string =~ /\s/ →  2

my_string =~ /my/ →  0

24   Welcome to Ruby.



The pattern enclosed in the slashes is matched to the string using the =~; using that 
pattern,  the  index  of  the  first  match  (i.e.  an  occurrence  of  a  string  matching  that 
pattern)  is  returned.   I  realize  this  is  a  rather  cursory  rundown  of  what  regular 
expressions can do. I will discuss this more in detail later on in this chapter, but for 
now I thought it beneficial for you to be familiar with that if you see it somewhere 
before you get there.

This Chapter   

You learned about Ruby's object system and built-in classes.  You learned...

• that everything in Ruby is an object.

• that the basic built-in classes in Ruby are the number (Fixnum and Bignum), 
the String, the Range, the Array, and the Hash.

• that setting a Ruby variable is actually setting a reference rather than a value, 
but can be set to values if needed.

Welcome to Ruby.   25



2
Break it down now!

Now that you are familiar with some basic objects and how to manipulate them a little 
bit, we should probably move on to segmenting your code; surely you didn't think that 
applications ran in one huge chunk of code!  It would be silly if you had to repeat every 
piece of code you wanted to use again or worry constantly about if you were stomping 
on a variable you used 30,000 lines ago, so the language geniuses have created a few 
ways to segment your code.  

The  most  fundamental  of  these  is  a  block;  blocks  are  just  pieces  of  code 
segmented away from their context by an initiator and the end keyword.  The initiator 
could be the begin keyword (which I will use as an example here) or something like if 
or for (which you will learn about in the next section).  To create a block of code, you 
simply place the initiator on a line followed by any needed requirements (which are 
nothing for the begin keyword), followed by the code you wish to place in the block, 
and ended by the end keyword (I'm sure that one will be hard to remember...).  Here's 
an example:

begin
  puts "I'm in a block."
  puts "Still there..."
  puts "Stillllll in here..."
  puts "OK, I'm done."
end

Using a  begin/end block by itself really doesn't afford you anything except to show 
that it is separate from its context, but they can paired with and meshed into various 
constructs to achieve different results.  I'll touch on a lot of these constructs in this 
section and later on when I talk about using blocks more effectively (it's a hootnanny 
trust me!).

METHODS

In the examples above, I've been rather liberal in my usage of methods without much 
explanation.   If  objects/variables  are  the  nouns  of  programming,  then  we  could 

26   Break it down now!



describe  methods  as  the  verbs;  methods  "do  stuff."   In  more  technical  language, 
methods are pieces  of  code that are called  from  within  other  code  using variables 
called parameters (also known as arguments or options) fed to them from the calling 
code.  Think of them as begin/end blocks that can be called arbitrarily.  When I say 
arbitrarily,  I  mean  that  they  can  be  called  anywhere,  anytime.   There  isn't  a  set 
"method" block that all method calls live in.  I realize this business with parameters 
and such  sounds a  little  confusing,  but  we've  already  sent  parameters  to methods 
when we've sent text to puts or a string to chop!.  We've already been doing it without 
ever saying we were!  I slipped it right in there on you; I'm a smooth criminal, I know. 

When methods are called in Ruby, you aren't technically "calling" a method 
(even though that terminology is often used to describe it).  You are actually sending a 
message to an object saying, "Hey!  Do you have this method?"  If they do, the method 
is executed; if they do not, a  NoMethodError is thrown and there is much weeping 
and gnashing of teeth. "Great, " you say.  "But what are methods for?  Sure, you can 
use them to 'do stuff,' but is there a 'bigger' purpose for them?"  Of course.

Methods are used to, firstly, remove redundancy.  For example, it would be 
silly to type the same 15 lines of code over and over again if you were going to be using 
them all through your application.  You can just create a method and call it wherever 
you need it.  Methods, secondly, allow you to segment your code better.  Maintaining a 
550  line  piece  of  code  is  never  fun  for  anyone  (except  extremely  self-deprecating, 
abusive,  masochistic  crazy  guys,  but  those  guys  work  over  in  accounting  right?); 
methods  allow  you  to  split  up  all  the  logic  in  that  huge  mess  into  smaller,  more 
manageable chunks.  

Defining Methods

I'm sure you are growing rather anxious in anticipation of being able to create your 
own shiny new methods.  Well, wait no longer my impetuous friend!  Here is that 
which you desire:

Break it down now!   27

Figure 5: Calling of methods.  It's much like pig calling, only electronic.



def my_new_method(name)
  puts "hey, " + name + ", this is my new method..."
end

my_new_method('magnus')

→  hey, magnus, this is my new method...

A method is defined by entering  def followed by the method name and parameters 
(i.e. variables passed into a method to be used within that method, remember?); the 
following lines should contain the desired method code ended by the  end keyword. 
That's it; simple enough, right?  

Well,  there's  a  bit  more  to  methods than  that.   First,  your  method  name 
should (by convention, of course) start with a lowercase letter (and preferably be all 
lowercase).   The reason for this  is  that  Ruby thinks that  things that start  with an 
uppercase letter are constants and classes rather than methods; this could cause some 
rather  rascally  behavior  from  your  application.   While  we  are  on  the  subject  of 
convention, there are other conventions that pertain to the name of methods.  Firstly, 
if it is querying an attribute, it should end in a question mark; for example, if you were 
to  write  a  method  to  get  the  number  of  French  military  victories,  you  could  do 
something  like  France.has_military_victories?.   This  would,  of  course,  return 
false.  Another convention to follow is that if the method modifies its receiver in place 
(i.e.  the  method  modifies  the  object  that  called  it),  then  it  should  end  in  an 
exclamation  point;  for  example,  let's  say  you  were  replacing  the  existing   cyborg 
software that all those robot celebrities run with a new snazzy Ruby-based system.  To 
execute  another  facelift  and  make  them  look  40  years  younger,  you  could  do 
Dolly_Parton.facelift!,  or  to  set  their  age  to  an arbitrary  value,  you  could  call 
Bob_Barker.set_age!(30). 

The  next  thing  we  should  probably  discuss  about  methods  are  the 
parameters (or arguments or whatever) that are passed in.  These variables are passed 
into the method as local variables, which means they are local and usable only in the 
context of that block of code (the method).  This means that the variables that created 
in that block of code and its parameters are not usable outside of that block of code. 
The language to explain it is a little dense, so let's look at an example:

def my_method(first, second)
  puts first
  third = second
  puts second
end

my_method("yes.", "no.")

→  yes.

→  no.

puts first

→  ! NameError: undefined local variable or method

puts third

→  ! NameError: undefined local variable or method

28   Break it down now!



Notice that neither the parameters nor the created local variable are accessible outside 
the method unless they are returned or passed outside of it otherwise.  This concept is 
known as scoping and will come up many, many times while programming in Ruby; I 
will highlight when scoping will be an issue with a new concept.  Variables can be 
scoped globally, locally, class scoped, etc.; any block (including conditional blocks like 
if's and loops) can have variables that are local to it.  There will be more coverage of 
this  as  we  progress,  but  it's  important  to  remember  scoping  when  working  with 
methods; it can cause severe headaches if you aren't careful. 

So now that you understand what parameters  are and do,  let's  get  fancy. 
What  if  you  don't  want  to  require  a  certain  parameter?   Or  maybe  you  want  a 
parameter to be able to take many parameters.  Well, Ruby can deliver on  both of 
those.  Ruby offers optional parameters for methods; they aren't really optional so 
much as you can assign a default value to them.  For example:

def new_method(a = "This", b = "is", c = "fun")
  puts a + ' ' + b + ' ' + c + '.'
end

new_method('Rails')

→  Rails is fun.

This technique is helpful if 99% of the time you'll be using the method with a certain 
value (either a parameter or local variable) but you want to be able to change that 
value every once in a while.   You could pass in  nil to  the method every time you 
wanted to use the default value and filter it through a check or some hogwash like that, 
but that wouldn't save any typing nor would it make any sense.  This language feature 
allows you simply specify the parameters you need and leave the rest as they as are; do 
note, though, when using this feature that the parameters must be in the same order 
and you can not skip any parameters in the list (i.e. it's best to place the ones you won't 
be explicitly defining that often at the end of the list).

Parameter lists can also be variable length; let's say that you wanted to create 
a  rather  contrived  method  that  outputs  your  relations  based  on  parameters  you 
provide.  The method could look like this:

def print_relation(relation, *names)
  puts "My #{relation} include: #{names.join(', ')}."
end

print_relation("cousins", "Morgan", "Miles", "Lindsey")

→  My cousins include: Morgan, Miles, Lindsey.

I could have provided any number of names in the list; by placing an asterisk before 
the identifier for the last parameter, you can turn it into a variable length list (which is 
actually just an Array created from the objects you provide, which is why we can use 
the join method with it).  This technique is helpful when dealing with lists of objects 
or maximizing the flexibility of the method (i.e. using a method to process one or more 
objects in one fell swoop rather than calling the method several times).

Break it down now!   29



Using Methods

Now that you know how to create methods, you would probably like to know how to 
use  them  more  effectively  (or  simply  at  all).   As  you  have  seen  in  previous  code 
examples, calling a method is as simple as putting the method name followed by the 
required parameters (if there are any).  There are many ways to format a method call; 
sometimes  a  method  may  not  require  any  parameters  so  the  parentheses  and 
parameters  are not needed.   Many  times you can call  a  method without  using the 
parentheses, but this is generally not good practice (it's silly to sacrifice readability 
just to save two keystrokes unless you're only passing one parameter).  Let's look at 
some examples:

puts "Look ma!  No parentheses!"
puts("Look ma!  Parentheses!")
puts
puts()

All of the above examples are valid calls of puts.   The first two examples demonstrate 
the  optional  parentheses  usage;  the  second  set  merely  demonstrates  that  not  all 
methods need parameters.  Do note that most methods do require parameters and will 
throw an ArgumentError if they don't get the correct number.

So methods are great, right?  But how do we do anything with them?  What 
good are they if the variables used in them are useless outside of them?  This is where a 
method return value comes into  play;  a  method  allows you  to  return one or  more 
values from within the method to be used outside of it.  Methods always return a value, 
but if no value is explicitly specified, the value returned is nil (e.g. when a method is 
defined, Ruby returns nil) or the last value used inside the method (if that exists).  For 
example:

def return_me(value)
  scoped_value = value
end

def echo_me(value)
  value
end

def multi_return
  return 'more', 'than', 'one'
end

my_value = return_me('this is fun!')
puts my_value

→  this is fun!

one, two, three = multi_return
puts one + three

→  more one

If no return statement is placed inside the method, the last value used in the method is 
returned;  this value can be either a variable that has been assigned (as in the first 
example),  an  object  that  is  created  (e.g.  placing  a  string  literal  on  a  line  by  itself 
because that creates a String object), or any other object that is referenced in the last 
line of the method (as in the second example).  This means that a return command or 

30   Break it down now!



final reference isn't required if the last value used is the value you would like to return 
(as in the first example); if this is not the case, the second example demonstrates the 
usage  of  the  final  reference  method  of  returning  a  value  and  the  last  example 
demonstrates usage of the return statement.  The last example demonstrates using 
return and how you can assign variables in parallel (like discussed in the section on 
variable assignment) with method returns; since it is simply populating an array that 
is  collected from the lvalues you specify,  you can also use this method to populate 
arrays.

BLOCKS AND Proc OBJECTS

I mentioned blocks early in this chapter, but I'd like to cover them more in depth now. 
Blocks are a very powerful concept in Ruby, but very confusing for the newcomer, so 
some discussion is in order.  In Ruby, a block is an object that contains some Ruby 
code along with the context neccesary to execute it.  It doesn't make sense to say that a 
code block is an object, but remember that everything in Ruby is an object.   

Block Basics

I said earlier that blocks are simply code wrapped in a do/end construct, but they go a 
little further than that.  Blocks can be constructed in a number of ways, and in doing 
so, create an object that holds code that can be passed to methods or held in variables. 
Put simply, a Ruby code block is much like a method without a name tagged on it. 
Perhaps this will make a little more sense if you think of them as being very similar to 
C's  function  pointers,  C++'s  function  objects,  Python's  lambdas  and  list 
comprehensions,  Perl's  anonymous  functions,  Java's  anonymous  inner  classes,  or 
even closer, Smalltalk's or Lisp's blocks. If  you've used any of these languages and 
none  of  those  sound  familiar  to  you,  this  isn't  very  uncommon:  typically  they  are 
shunned by all but experts in the language.  Fortunately for you, I'm going to make you 
learn about them (they're an important concept in any language!), and even if you 
don't want to learn about them, too bad: you can't write Ruby without them.

Let's take a look at a simple usage of blocks: method parameters.  A lot of 
methods take blocks as parameters, so let's look at one of those now.

myarray = %w{one two three four}
myarray.each {|element| print "[" + element + "]... " }

→  [one]... [two]... [three]... [four]... 

This  snippet  simply  iterates  an  array  using  the  each method  and  passes  in  each 
element to the code block; the code block can then treat that element as an "argument" 
and operate it much like you would a method argument.  The code block in this case is 
formed using braces; this is another way other than the do/end combination that you 
can form a code block.  Although it looks like you're using the each method to "open" 
a code block, you're actually passing that block of code in as a parameter to the each 
method.  If you're completely lost, perhaps breaking down this example will  clarify 

Break it down now!   31



this example a little more.  If you get the concept, skip the next paragraph; it'll just be 
redundant.

Let's take the following line of code apart and look at each part of this call 
separately.

myarray.each {|element| print "[" + element + "]... " }

We first call the each method on the array object myarray.  This method takes a block 
as a parameter; that is to say that it takes a parameter which is a block of code that it 
will execute.  This block is very similar to the  begin/end blocks we saw earlier; we 
could rewrite the above code as follows if we wanted to.  

myarray.each do |element|
  print "[" + element + "]... "
end

Notice that the braces are simply replaced by  do/end.   Both notations do the same 
thing, but the brace notation (i.e., { }) is more concise and makes more sense if you 
only  have a  line or  two of code.   At  a  certain point in  this  method (which will  be 
discussed later when we talk about how to use blocks in your own methods), the code 
tells  Ruby to pass a parameter  to the block and run the block.  Ruby does so and 
returns the value of the block code (if there is one) much like it returns the value of a 
method.  Let's visualize this flow of control just to drive the concept home.

If you still don't get it, you need to.  Go visit some of the links in Appendix A under the 
Documentation section; search on Google; visit some of the blogs on the aggregators 
under  the  Ruby  Language  section  of  Appendix  A.   Someone,  somewhere  has 
explained this concept in a way that you can understand if I haven't; I wouldn't drive 
this concept home as much, except that it's a very cool, useful, powerful, and essential 
concept in Ruby.  If you do grasp blocks, then let's move on to how to use them in your 
own code.

Procs and Blocks

Think of Proc objects as blocks that are pushed into variables.  The difference between 
them is there, but not important enough to worry about until you need to (and you'll 
know when you do).  The primary difference is performance, but that will be discussed 
when we reach the other end of the problem.

Proc objects are simply instances of the Proc class that hold a block of code 
that is executable.

myproc = Proc.new {|animal| puts "I love #{animal}!"}
myproc.call("pandas")

→  I love pandas! 

32   Break it down now!



As you can see, a Proc is created when the constructor is called and given a block as a 
parameter.  The code in the block is then stashed away in a Proc instance and can be 
called at any time.  Proc objects are especially useful when you want to create a block 
of code and pass it around or generate new blocks from that one.  To call the code in 
the Proc object, simply use the obviously named call method and it will call the code 
inside the block you gave it.  For example, let's say that The Big T.V. Network has 
commissioned you to write a Ruby script that will display the mastheads for their new 
lineup of  shows (which includes Banjo Bill's  Bridge Brigade,  Cucina Italiana with 
Rafael  Ramirez  Rodriguez  de  Jesus,  and  PANDA!monium).   You  simply  need  to 
display the text for the show on the console and their fancy graphics backend will do 
the rest (yeah, their technology is  that  awesome).  The only problem is that because 
their hosts change so often (i.e. Mr. Rafael just replaced Ho Chi Minh as the chef on 
Cucina Italiana just a minute and a half after he started), there needs to be a way to 
specify a show name separately from the host name and be able to change the host 
name on the fly.  You say, "Hey!  Blocks could possibly do that!"

def make_show_name(show)
  Proc.new {|host| show + " with " + host}
end

show1 = make_show_name("Practical Cannibalism")
show2 = make_show_name("Cotillions in the Amazon")

show1.call("H. Annabellector")

→ Practical Cannibalism with H. Annabellector

show2.call("Jack Hannah")

→ Cotillions in the Amazon with Jack Hannah

show1.call("Kirstie Alley")

→ Practical Cannibalism with Kirstie Alley

This looks like a typical Proc call like we looked at before, but notice something that's 
going on here.  We fed it the show name when the  Proc was created, but we never 
mentioned it  after  that.   How is  that  possible?  When the  show parameter for  the 
make_show_name method passed out of scope (i.e. the method exited), it should have 
been destroyed.  Ah, but this is one of the beauties of a  Proc object: it preserves the 
context in which it was created and can access that context at any time.  This is why 
our show name was preserved without any further effort on our part.  

Another  way  to  create  a  Proc  object  is  to  bind  a  block  of  code  using  the  lambda 
method; calling this method is essentially equivalent to calling Proc.new.

myproc = lambda {|x| puts "Argument: #{x}"}

myproc.call("Texas forever!")

→ Argument: Texas forever!

As you can see, the lambda function will take a block of code and bind it to a Proc, just 
like Proc.new.  What can't be seen from this example are some of the differences that 
exist.  First of all, Proc objects created with lambda have stricter argument checking 
than those created with Proc.new.

lproc = lambda {|a,b| puts "#{a + b} <- the sum"}
nproc = Proc.new {|a,b| puts "#{a + b} <- the sum"}

Break it down now!   33



nproc.call(1, 2, 3)

→ 3

lproc.call(1, 2, 3)

→ !ArgumentError (wrong number of arguments (3 for 2))

The  Proc object  created  with  Proc.new functioned  fine  when  given  too  many 
arguments,  but  the  lamba Proc with  its  Nazi-like  argument  checking  threw  an 
ArgumentError.  What a jerk...jeez.  Crashing the whole application just because he 
got too many arguments?  Lame.  So, anyhow, another distinction between the two is 
how they  control  the flow of  your  application.   Objects  created with  lambda don't 
affect the flow of the application outside of the block when returning a value;  Proc 
objects created with  Proc.new,  on the other hand, will  exit  their enclosing method 
when returning.

def procnew
  new_proc = Proc.new { return "I got here..." }
  new_proc.call

  return "...but not here."
end

def lambdaproc
  new_proc = lambda { return "You get here..." }
  new_proc.call

  return "And I got here!"
end

puts lambdaproc

→ And I got here!

puts procnew

→ I got here...

Note that in the case of  procnew, the value returned is the value returned from the 
block.  The  lamba-created  Proc object simply returns its value to its parent method, 
which  can then stash the value in a  variable  or  return  it  if  it  wants  to.  This  is  an 
important distinction to remember, because it can cause you a lot of headache if you 
are using  Proc objects in a method and you can't figure out why the method keeps 
breaking (I speak from experience!).  Now that you understand how to work blocks 
into your code using Proc objects, let's look at how to integrate them in tighter with 
your methods.

Building Blocks

There are a few ways to get blocks to work for you in your methods; the first way is 
that you can pass a Proc object in as a parameter just like you would any other object. 
This can get tedious, however, and, from what I hear, it also hits your performance 
pretty hard (I would put the hit on a level somewhere between being slapped with a 
greasy piece of bacon and the rapture).   Fortunately, Ruby gives you a few ways you 
can put blocks to work with minimal fuss and performance degradation.  Integrating 
blocks into your everyday code usage is quite simple; just combine in a sprinkle of 

34   Break it down now!



determination,  a  dash  of  yield,  and  a  liberal  application  of  closures  in  a  small 
integrated development dish and bake at 400˚ for 15 minutes or until crisp.

Implicit Block Usage  Outside of taking a Proc parameter, Ruby offers only one other 
way to use blocks as parameters, but this way is not only more intuitive, it performs 
better.  I call this implicit block usage because you don't tell your method, "Hey, I'm 
using this block here," and then call it in the method.  You simply yield control of the 
code over to the block; this won't really make sense without an example, so let me just 
show you a simple snippet.

def yieldme
  print "1. Enter method. "
  yield
  print "3. Exit method."
end

yieldme { print "2. Enter block. "}

→ 1. Enter method. 2. Enter block. 3. Exit method.

Notice  what  happens  here.   First,  we  enter  the  method  and  print  out  our  first 
statement.  Second, the yield method is called, and our block is executed.  The thread 
yields  control  over  to  the  block  temporarily;  when  the  block  exits,  the  control  is 
restored to the block's caller.  Lastly, the rest of the method is executed.  This is how 
the each method on arrays that we used earlier works.  Let's say we wanted to rewrite 
that  method  for  some  reason  (perhaps  your  pet  raccoon  who  fancies  bowlers 
convinced you to rewrite it); you could use yield to execute the block.

def myeach(myarray)
  iter = 0
  while (iter < myarray.length):
    yield(myarray[iter])
    iter += 1 
  end
end

testarray = [1,2,3,4,5]

myeach(testarray) {|item| print "#{item}:"}

→ 1:2:3:4:5:

I realize this snippet might be a little over your head (especially that while line!), but 
bear with me because this is a simple enough snippet to understand.  The while block 
creates a loop, which means that we execute the code inside the block a number of 
times (learn more about loops on page 53).  Even though it may look complicated, the 
same concept applies  here  as  before:  the method yields  control  to  the block.   The 
difference here is that we passed a parameter to the block each time we looped over 
the code; this allows us to use variables from within the calling method within the 
block for processing.  Using yield is an excellent way to implement an iterator like this 
for your own collections.

The Ampersand (&) Parameter  If you prepend the name of the last parameter of a 
method with an ampersand, then the block that is passed to the method will become a 
Proc just  as  if  you  had  passed  it  as  a  parameter  normally.   Well,  not  completely 
normally; it does a few tricks.

Break it down now!   35



def ampersand(&block)
  block.call
  yield
end

ampersand { print "I'm gettin' called! " }

→ I'm gettin' called! I'm gettin' called!

I said it would become a  Proc, so you can use  call on it, but notice also that  yield
works.  This is an interesting and helpful trick, since you may want to use  call or
yield in different cases.

YOUR OBJECTS LACK CLASS!

As stated (many times) before, everything in Ruby is an object; Ruby, of course, allows
you to create your own objects through the creation of  classes to describe them.  If
you've programmed in an object oriented language before (like C#, C++, Python, or
Java), then the concepts of classes and objects should not be foreign to you, but there
are some distinctions between those languages' implementation of object orientation
and Ruby's implementation.

One thing that may seem rather foreign is the way that Ruby handles typing
of objects.  Languages like C++ or Java operate solely on static (or explicit) typing; this
sort of typing requires that each object have its type explicitly defined at compile time
(or the compiler will throw an error).  I realize that most modern languages that use
static typing also implement a sort of reflection or some such module that allows you
to dynamically load types, but Ruby uses a completely different approach to typing.  If
you've used Python, you're familiar with the concept of dynamic typing; Ruby uses
this same idea but calls it "duck typing" (which makes it much easier to explain).  

36   Break it down now!

Figure 6: Both classes implement a method named sayhello, so they can both respond to the
message.  I would like to add that yourclass smells.



Another concept that may seem foreign to C++ or PHP programmers (but 
not Java or C# programmers) is the concept of a language-wide object hierarchy.  In 
Ruby, every class is actually an object which is an instance of the Class class which is 
in turn derived from the Object class.  We can demonstrate this with code:

puts File.class

→  Class

puts File.superclass

→  Object

puts Object.superclass

→  nil

The super class of a class is the class which it is derived from; in Ruby, we can say that 
classes can "inherit" from another class all of its methods and variables.  As a result, if 
a class is derived from another class (i.e. it inherits from another class), it has access to 
all of the super class's methods and variables.  The catch in Ruby is that unlike some 
other languages,  a  class  can only  inherit  from one class  at  a  time  (i.e.  a  class  can 
inherit from a class that inherits from another class which inherits from another class, 
but a single class can not inherit from many classes at once).  As we can see, the File 
class is just an instance of the Class class which inherits from the Object class which 
inherits from nothing.  This means that the  File class has access to all of  Object's 
methods and variables (just like every other class).  This also means that the Object 
class is the origin of all  other objects; it  is the Adam and the Eve, the Creator, the 
Architect, the Mother of all Objects and Classes!

I'm  sure  this  talk  of  classes  being  an  instance  of  something  is  somewhat 
confusing, but keep in mind: everything in Ruby is an object.  Everything.  So when 
you define a class, you're really creating an instance of the  Class class.  When you 
create a new object from a class, you're calling (class name).new which is a method 
that returns a new object instance of the class it describes.  Everything in Ruby is an 
object!

Defining Classes

So let's get to it.  To define a class, you place the class keyword at the beginning of a 
line, followed by a  < and the class it inherits from (if it inherits from a class).  For 
example:

class MyFirstClass < Object
end

That's  it;  we've  just  defined our first  class.   Granted,  that  was the most contrived 
example  ever  put  into  print  and  it  represents  a  completely  useless  class,  we  still 
defined a class.  Notice that I indicated it inherits from Object, but this is completely 
unnecessary; Ruby will assume that if you define a class with no other inheritances 
that you wish to inherit from Object.

Break it down now!   37



Methods and Variables

Classes can contain variables and methods; the first thing you would most likely want 
to add would be a method so you can make your class do some work.  The first method 
we should add is the initialize method, which is the method that Ruby calls when 
you call (class name).new.  When you call the new method, a new object is created 
and the initialize method (with parameters passed from new) is called to setup the 
object's state (i.e. variables, flags, etc.); this is very similar to (albeit identical to) other 
language's constructors.  For example, let's say that the Boogeyman has decided to 
give up on trying to freak out every kid in the world (he's rather old, you know) and 
instead  build  a  robot  army  (running  software  written  in  Ruby  no  less)  to  do  his 
nefarious bidding.  The initial class definition and initialize method might look like 
this:

class Boogeyman
  def initialize
    puts "Yes, master?"
  end
end

monster1 = Boogeyman.new

→  Yes, master?

This method, of course, does no real work other than to demonstrate that when you 
create a new object, the initialize method is called.  Let's make it do some work now:

class Boogeyman
  def initialize(name, location)
    @name = name
    @location = location
    puts "Yes, master?"
  end
end

monster1 = Boogeyman.new("Mister Creepy", "New York, NY")

→  Yes, master?

This new initialize method sets some instance variables (i.e. variables that are used 
within an object to retain its state); to set an instance variable, prefix the lvalue with an 
at symbol (@).  Unlike other languages, you don't have to include these variables inside 
the class definition.  

Variables set this way are unique to that particular  instance; we could say 
that they are instance scoped (i.e. they are not usable outside of that instance unless 
they are passed outside of it; remember scoping?).  Notice that since @name and name 
are scoped differently, we can use duplicate names without ambiguity (though this is 
usually not a good idea).  Let's create a few methods to work with an object's state:

class Boogeyman
  def change_location(newlocation)
    @location = newlocation
    puts "I moved to #{newlocation}!"
    self.get_info
  end

38   Break it down now!



  def change_name(newname)
    @name = newname
    puts "I shall be called #{newname} from now on!"
    self.get_info
  end

  def get_info
    puts "I am #{@name} in #{@location}."
  end
end

monster1 = Boogeyman.new("Loopy Lou", "Albuquerque, NM")

→  Yes, master?

monster1.change_location("Wyoming")

→  I moved to Wyoming!

→  I am Loopy Lou in Wyoming.

monster1.change_name("Beezlebub")

→  I shall be called Beezlebub from now on!

→  I am Beezlebub in Wyoming.

This example demonstrates two important concepts.  First, notice that I did not enter 
the entire class listing again.  This wasn't laziness (well, not completely at least); in 
Ruby, classes are never closed.  This means you can always add methods to or redefine 
(or in proper terminology, override) any method for a class simply by opening a class 
definition and adding or redefining a method.  This can be dangerous at times, but 
overall it's one of the most useful aspects of Ruby's object implementation.  Let's look 
at an example:

class String
  def writesize
    puts self.size
  end
end

size_writer = "Tell me my size!"
size_writer.writesize

→  16

As  I  said  before,  while  it's  possible  to  override  a  class's  methods  (even  built-in 
classes!), it can be dangerous (i.e. modifying some of Object's methods or modifying 
certain operators can make everything go nuts), but at the same time, it can also be 
useful.  The Ruby web framework Rails makes extensive use of this concept, especially 
in its ActiveSupport package; if you're looking for something a little more complicated 
and  interesting,  I  suggest  looking  at  their  extensions  to  various  classes  in  that 
package. 

The second concept shown in these examples is the use of the  self object. 
The  self object always points to the current instance; it allows you to call methods 
from within the current instance (like  size in the  String class or  get_info in our 
class).  Though self isn't required in most cases (i.e. if no receiver is specified for a 
method, Ruby assumes you meant self), it is important to be aware of it in case you 
are in a context where you will need it (e.g. you have implemented a method named 
puts in your class and you want to call it and not the built-in one).

Break it down now!   39



Attributes

While instance variables are useful in their own way, they aren't visible to the outside 
world.   It  may  seem  like  a  dandy  situation  at  first:  all  your  objects'  states  are 
completely hidden and unchangeable by the outside world.  But after a  while,  you 
might just want to retrieve or change a value within an object.  How are we to do this?! 
Well, it's really quite simple:

class Boogeyman
  def scare_factor
    @scare_factor
  end

  def hiding_place
    @hiding_place
  end

  def scare_factor=(factor)
    @scare_factor = factor
  end

  def hiding_place=(place)
    @hiding_place = place
  end
end

monster1 = Boogeyman.new("Crazy Cal", "Nashville, TN")
monster1.scare_factor = 6000
puts monster1.scare_factor

→  6000

As the example shows, to create a readable attribute, you simply create a method and 
place the instance value to return in it  (the last value used in a method is returned 
remember?).  Attributes are simply methods that are used to retrieve or set values.  To 
create a writable attribute (i.e. an attribute you can set), you simply append an equals 
sign (=) after the name of the attribute method; you can either do like I did and write 
straight to an instance variable or do some other work before you do so (i.e. make sure 
the value provided is  the proper type/format,  convert  formatting to a  more usable 
form, etc.).  This seems like an awful lot of work just to write to a value in a class 
doesn't it?  I mean, in C# or something similar all I have to do is put "public" before 
the variable in the class and it's visible to the outside!  Well, since attributes are such a 
common construct, Ruby has a really simple facility for them:

class Boogeyman
  attr_reader :scare_factor, :hiding_place
  attr_writer :scare_factor, :hiding_place
end

Now you can read and write attributes just as before; these faculties are a pretty way to 
create methods that behave identically to the ones we created before.  This technique 
is easier than writing out methods, but you lose the flexibility you may gain by making 
your readers or writers explicit methods that you write.  For example, let's say that the 
scare factor  is  supposed to  be displayed in  Freak-o-grams (Fg);  you could  write a 
reader to display it as such:

class Boogeyman
  attr_writer :scare_factor

40   Break it down now!



  def scare_factor
    return str(@scare_factor / 1000) + "Fg"
  end
end

monster1 = Boogeyman.new("Psycho Sally", "Los Angeles, CA")
monster1.scare_factor = 6000
puts monster1.scare_factor

→  6Fg

Some would call these virtual attributes, but I really think they need a special name.  It 
really  doesn't  matter  what  you  call  them,  but  they  are  a  great  way  to  mask  the 
implementation of your class.  To the outside world, it looks like a normal attribute, 
but you know the truth!  It's your little way of sticking it to the man.

Access Control

So far our methods and attributes have been wide open to the world, but now let's take 
a look at ways we can control access to parts of our class.  Up until now, all of our 
methods (except initialize, which is always private) have been what we call public 
(i.e. accessible from within the class and the outside world).  Since that is the default 
behavior of Ruby, let's add a method to our class as an example:

class Boogeyman
  def scare(who)
    puts "I just scared the bejezus out of #{who}!"
  end
end

The method we just created is public because we didn't specify any access controls; we 
could create protected methods (i.e. a method that accessible by any instance of a class 
or its derived classes) by placing  protected on a line and then entering subsequent 
methods which will be protected.  For example:

class Boogeyman
  protected
    def are_you_a_monster?(whosasking)
      puts "Yes, #{whosasking}, I am a monster!"
      return true
    end
end

Now the only objects which have access to this method are those that are instances of 
Boogeyman and any class that is derived from Boogeyman.  This is useful if you have a 
method like the one above that needs to provide information to classes of the same or 
similar type, but no one else.  On the other hand, if you have a method that only the 
current object instance should have access to, then you should declare it private.  The 
difference between protected and private is only slight: protected allows any instance 
of the same or derived class to access it but private allows only the current instance to 
have  access.   Let's  add  a  method  to  phone  home  to  the  Boogeyman  himself  and 
redefine our scare method to use it.

class Boogeyman
  private
    def phone_home(message)

Break it down now!   41



      # TODO: Actually make this phone home
      # For now, we'll just write to the console
      puts message
    end

  public
    def scare(who)
      phone_home("I just scared the living poop out of #{who}!"
    end
end

Now  only  the  current  instance  will  have  access  to  the  phone_home method;  we 
wouldn't want just anyone phoning home and making it look like this monster would 
you?  Notice that you can use the public keyword in the same way to make methods 
explicitly  public or in this case to change the mode back to public after defining a 
private method.

Class Scoped Objects

So far we've been working with instances: instance variables, instance methods, et 
cetera, but many times a class (rather than an instance of that class) needs to maintain 
a  state  or  provide  a  method  that  is  not  tied  to  an  instance.   This  is  where  class 
constants, variables, and methods enter the ball game.

Class constants are handy little mechanisms that allow you to place values 
into the class scope that will not be changed (unlike variables which may and probably 
will  change).  To  create a class constant, you simply place the constant name and 
value into the class definition:

class Boogeyman
  MY_BOSS = 'Mr. Boogeyman'
end

Now every method in class Boogeyman (both instance and class scoped) has access to 
the value MY_BOSS.  

To create class  variables,  place two at  symbols  (@@)  before the name of a 
variable; they operate nearly identical to instance variables except their state lives in 
the class rather than a particular object.  For example, the Boogeyman has asked that 
we have a way to get the name of the newest denizen he has released and where he is. 
We can provide this with a class variable:

class Boogeyman
  # We'll redefine initialize
  def initialize(name, location)
    @name = name
    @location = location
   
    @@latest = @name
    @@location = @location
    puts "Yes, master?"
  end
end

42   Break it down now!



monster1 = Boogeyman.new("Macabre Mac", "Seattle, WA")

→  Yes, master?
monster2 = Boogeyman.new("Gory Gary", "Reston, WV")

→  Yes, master?
puts Boogeyman.latest

→  Gory Gary

As the example shows, you access a class variable by using the class name followed by 
a dot and the variable name; much like class constants, you can access this value from 
either class scoped or instance scoped methods.  Notice that because  @@location, 
@location, and  location are all scoped differently, they can all use the same name 
without causing a problem.  While this isn't  recommended (having three variables 
with  the same  name  is  likely  to  drive you  batty  in  less  contrived,  more  real  world 
situations), it is possible (and occasionally useful).  

Class methods are methods that are provided by a class (not an instance) that 
may not particularly need to be to an instance.  This feature is useful if, for example, 
you wanted to provide a prefabricated instance of a class (e.g. a method named man for 
a  class  named  Person might  provide  an  instance  with  the  gender field  set).   The 
Boogeyman has requested that we have a class method to output the latest robot's 
name since he's way too lazy to delve into the code or use a Ruby console to find out 
for himself (he is retired, you know).  So let's provide:

class Boogeyman
  def Boogeyman.latest_monster
    puts "The latest monster is #{@@latest}."
    puts "He is in #{@@location}."
  end
end

Boogeyman.latest_monster

→  The latest monster is Gory Gary.

→  He is in Reston, WV.

Because latest_monster is a class method, it only has access to variables within its 
scope (i.e. class variables);  this means it cannot access instance variables at any time 
unless they are passed into the method as a parameter or referenced in a class variable. 
Unlike other class scoped variables, class methods are not visible to instance scoped 
objects and methods; this means that you must call a class method using its full call 
(i.e.  you wouldn't  be able to simply type  latest_monster like you can  MY_BOSS or 
@@latest; you would be required to call it using Boogeyman.latest_monster).

MODULES

Perhaps  sometime  you'll  need  to  organize  a  lot  of  code.   I  mean  a lot.   Like  the 
population of China a lot.  Maybe that code isn't simply one class or it isn't necessarily 
all  perfectly  related;  maybe  it's  got  some  issues;  maybe  it's  still  angry  about  that 
argument it had with grumpy_butt.rb last week; in any event, you have been charged 
to group it together for the sake of reuse and organization.   Normally in something 
like C or PHP you might simply stick this code in a file and include it wherever you 

Break it down now!   43



need it, but what if you have two methods or constants that are named the same?  Let's 
say  you  were  creating  a  panda  fighting  game.  You  have  a  constant  DEATH in 
const_values.rb to represent the amount of life that would constitute a death in the 
game, but you also have a constant DEATH in fighter_values.rb to hold an array of 
values  dealing  with  the  player  character  named  Death.   Both  pieces  need  to  be 
included, but there's a name conflict.  You would rather maintain a simple naming 
scheme  for  constants  rather  than  concocting  some  silly  name  like 
DEATH_VALUES_BECAUSE_I_CANT_INCLUDE_IT_WITHOUT_A_HUGE_NAME.  This  is  where 
modules are rather handy; they allow you to group constants and methods together 
logically into groups called namespaces, groups which organize modules and the like 
in  such  a  way  as  to  avoid  ambiguity  and  promote  logical  organization  of  code. 
Namespaces allow you to write larger groups of reusable code without the danger of 
stomping  on  other  code  outside  of  the  namespace.   This  means  there  could  be  a 
namespace  FighterValues and  a  namespace  ConstantValues to  maintain  their 
respective values.

Creating Modules

The syntax for creating a module is very similar to the syntax for creating a class; you 
place the keyword module followed by the module name; then on the subsequent lines 
you enter the methods and classes which should resign in this module followed by the 
end keyword.  Let's look at our example from before:

module FighterValues
  BAMBOO_HEAD = { 'life' => 120, 'hit' => 9 }
  DEATH = { 'life' => 90, 'hit' => 13 }
  KOALA = { 'life' => 100, 'hit' => 10 }
  CHUCK_NORRIS = { 'life' => 60000, 'hit' => 99999999 }

  def chuck_fact
    puts "Chuck Norris' tears can cure cancer..."
    puts "Too bad he never cries."
  end
end

module ConstantValues
  DEATH = -5 # Pandas can live PAST DEATH.
  EASY_HANDICAP = 10
  MEDIUM_HANDICAP = 25
  HARD_HANDICAP = 50
end

puts FighterValues::DEATH

→  {'life'=>90,'hit'=>13}

puts ConstantValues::DEATH

→  -5

Now both values can be used and co-exist in a friendly environment.  I'm sure you're 
thinking,  "Why  not  just  use  a  class?"   I  asked  myself  that  when  I  first  saw  this 
construct;  the only reason I saw was that, for the sake of design and proper software 
engineering, you shouldn't put things in a class that don't really go together so the 
module was a good excuse to break that rule without breaking it.

44   Break it down now!



But then I saw the coolest part.

Modules have a mechanism that allow for what's called a mixin, code that is 
"mixed into" a class as if it is part of its original code.  Think of it as inheritance, except 
better.  As noted earlier, a class in Ruby can only inherit from one class at a time.  To 
inherit from another class you would have to create some sort of chain of inheritance 
that would allow you to do "multiple inheritance" (not really but that's as close as you 
can get in Ruby).  Mixins eliminate the need for that.  You could create a class, inherit 
from another class, and mix in as many modules as you need.  This feature is especially 
great if the code that you need to mixin needs to only be mixed in (i.e. it won't ever be 
used by itself).  Let's look at a contrived example:

module Movement
  def run
    puts "I'm running!"
  end

  def walk
    puts "I'm walking a bit briskly!"
  end

  def crawl
    puts "I'm so slowwww!"
  end
end

class Man
  include Movement

  def jump
    puts "I'm bipedal and I can jump like a fool!"
  end
end

class Sloth
  include Movement

  def flop
    puts "It's all a lie...all I can do is flop around."
  end
end

mister_man = Man.new
mister_man.run

→  I'm running!

mister_slothy = Sloth.new
mister_slothy.flop

→  It's all a lie...all I can do is flop around.

As you can see, this mechanism is very similar to inheritance in that you can use all of 
the mixin's code.  To use a mixin, simply define a module and then use the  include 
keyword followed by the module's name (note I said module; the include keyword has 
nothing to do with files or libraries like in PHP or C++); from then on the class has 
access to all of that module's constants and methods.    It's obvious that this example 
doesn't  do this mechanism justice (i.e.  it  doesn't  demonstrate the usage of module 
constants in a mixin, it doesn't do much with the host class, etc.), but this is merely 
meant  to  be  an  introductory  example  in  hopes  that  you  will  experiment  and  read 
further.  As you will learn, the magic really happens when the class actually interacts 

Break it down now!   45



with  the  mixin  (as  with  some  of  the  Ruby  built-in  mixins  such  as  Singleton or 
Comparable which greatly extend the functionality of your class or some of the Rails 
mixins), but that's for a more advanced look at the subject.  

You may be thinking that this sounds great now, but do be careful.  Mixins 
are awesome as long as they are written well, but if the developer doesn't pay attention 
and be careful about naming they can create havoc in your application.  For example, 
let's say you have a constant called  PI which holds Pi to the 72nd digit (which you 
typed out manually because that's the amount of precision you need), but you mix in a 
trigonometry library written by Billy McDoofus which has a constant named PI which 
is only Pi to the 5th digit.  You need that precision, but since Billy McDoofus is an 
idiot, the mixed in library's constant will override your constant.  It's best to be sure 
that your naming scheme is unique (possibly even including the module name or your 
name) so as to not stomp on others' code.  

You  may  be  thinking right  now,  "That  jerk  left  out  methods in  modules! 
What about methods!?  I'm going to kill his cat and take my money back!  Are my 
methods simply going to suffer the same terrible fate?"  You would be justified in your 
furor, but relent, good friend, for methods do not suffer the same fate.  When you call 
a method, Ruby will first look to the host class (that is, the class being mixed into) and 
then to its mixins (and then to its superclasses and its mixins and so on); this behavior 
is the exact opposite of constants (and no I don't know why that is).  This could be a 
blessing or a  curse (i.e. you  may  want  the method to override yours), but generally 
this is the safest functionality for it.  

FILES

As your application gets bigger and bigger, you surely won't  want all  of your code 
living in one huge 5MB file.   Chopping code up into files  is  one of  the oldest  and 
easiest ways to segment your code.  I saved it for last because I don't want your answer 
to code segmentation to always be "Stick it  in a file!" when Ruby offers more (and 
better suited) options than that.  I think PHP programmers especially get stuck in this 
rut of including code all over the place, creating a jungle of files that only the machete 
of the delete command can navigate, but I digress.  To include a file in Ruby, you have 
two options: load and and its more elegant cousin require.  The difference is that the 
load keyword  includes  a  source  code  file  unconditionally  while  require will  only 
include it once (which means no duplication of variables and methods):

load "libraries/myfile.rb"
require "/home/myaccount/code/libraries/myotherfile.rb"

Both  keywords  accept  either  relative  or  absolute  paths;  if  Ruby  identifies  it  as  a 
relative path, it will search for the file in the current path (stored in $: for those who 
are curious).  The require statement is also great in that you can use it in conditionals, 
loops, and other constructs or use variables in its paths (you can not with load).  Keep 
in mind though that local variables in included files do not trickle into the context they 
are included in (this is contrary to PHP's and C/C++'s behavior); these variables are 
locked into the context that they are written in.

46   Break it down now!



This Chapter   

You learned how to break up your code into more logical  and usable pieces.   You 
learned...

• how to segment your code using blocks, methods, classes, modules, and files.

• how variable scoping works and how it can benefit you.

• how  to  make  your  own  classes  and  objects  and  how  to  make  changes  to 
others.

• that modules allow you to mix in code to classes and extend them.

Break it down now!   47



3
Hustle and flow (control).

Flow control is essential to every application (unless of course your application will 
always have one course of action and you don't  mind copying and pasting a lot of 
code).  Flow control constructs allow you to branch (i.e. execute a different flow of 
code) based on conditions, run the same branch numerous times, or bail when one of 
the  conditions  is  wonky.   There  are  two  "general"  flow  control  mechanisms: 
conditionals and loops.  I'll address them separately lest they end up in some sort of 
extremely confusing mental cesspool.   

CONDITIONALS

Conditional constructs are those constructs that give you and your users choices; they 
allow your program to branch and execute different code based on conditions within 
the application.  They compare values to determine truth and based on that truth they 
determine which (if any) branch of code should execute.  Think of them as the traffic 
lights of the Ruby programming world.

The if statement

The most fundamental conditional statement available in Ruby is the if statement: it 
simply  compares values to determine truth or untruth.   If  it  is  true,  then the code 
contained within the main branch is executed; if it is not true, either the code in the 
else clause is executed or, if no else block is present, no code in the block is executed 
and the application continues on. 

48   Hustle and flow (control).



The result of all if statements is either true or false regardless of how many conditions 
they test.  Let's look at an example:

if not (true != false) && (true != true):
  puts "Whoa!  Alternate dimension!"
elsif (false === 'false') then
  puts "Type conversion?  I think not..."
elsif (true == 1) or (3 == false)
  puts "Booleans != Numbers"
else
  puts "I guess we're still OK!"
end

→ I guess we're still OK!

There's  a lot  to look at  here,  so let's take it  a piece at  a  time.   An  if statement is 
constructed by placing the if keyword on a line followed by a conditional comparing 
values equality, inequality, etc.  The  if statement itself opens the conditional block 
(i.e.  if is the initiator of a begin/end block); you can create an if block simply with 
the  if statement, its block of code, and the  end keyword if that's all you need.  This 
example, though, demonstrates all of the possible constructs for an if statement.  The 
elsif and else keywords allow you to branch if the conditions in the if statement are 
not met;  elsif allows you to present another conditional test while  else is simply a 
fail safe if none of the conditions are met.  This means you don't need to create 10 if 
blocks when you can simply wrap them into 1 if block with a lot of elsif statements 
(with the safety net of the else statement to boot).

The second thing to notice are the operators used in the conditionals.  To test 
for equality, you should use the  == operator (that's two equals signs, not one; if you 
use one it will usually result in  true because you would be assigning a value rather 
than checking for equality).  To test for inequality, use the != operator.  Rather than 
entering these into a big fat paragraph, here is a table of operators usable by Ruby in 
conditionals:

Hustle and flow (control).   49

Figure 7: If I were a fish in the sea, I’d wiggle my tail and I’d giggle with glee...



CONDITIONAL OPERATORS IN RUBY
a == b Is true if the value of a to the value of b.

a === b Is true if the value of a to the value of b and they are the same type.

a != b

a <> b
Is true if a is not equal to b.

a !== b Is true if a is not equal to b or they are not the same type.

a < b Is true if a is less than b.

a > b Is true if a is greater than b.

a <= b Is true if a is less than or equal to b.

a >= b Is true if a is greater than or equal to b.

The third thing to notice about the example are the logical operators; these 
are special operators used to chain conditionals together or to evaluate special cases. 
Ruby  supports  two  forms  of  the  operators:  C-style  and  stringified.   The  C-style 
operators are like the one in the first example; && is the same as "and," the || operator 
means  "or,"  and  so  on.   The  stringified  operators  are  the same  as  their  symbolic 
brethren except that they are strings: and, or, etc.  Here is a table with these operators 
in both forms and their usage:

CONDITIONAL LINK OPERATORS IN RUBY
&& and Conditional is true if linked statements are both true.

|| or Conditional is true if either of the linked statements are true.

! not Conditional is true if attached statement is false (i.e. it works like !=).

The Ternary Operator  Now that you know the long hand way to do if statements, I 
would like to show you a bit of a shortcut.  The ternary operator (Random piece of 
trivia:  the ternary  operator  is  named  simply  for  having  three  parts)  allows  you  to 
execute an if statement without creating an entire if block.  For example, here is an if 
block followed by its ternary equivalent:

if ('Yes' == 'No') then
  puts "Wrong!"
else
  puts "Yeah, baby!"
end

→ Yeah baby!

('Yes' == 'No') ? (puts "Wrong!") : puts ("Yeah, baby!")

→ Yeah baby!

The ternary operator consists of the question mark after a conditional (which uses the 
same operators as an if statement) and a colon between the two possible branches of 
code.  The parentheses are not essential in every case, but do enhance readability and 

50   Hustle and flow (control).



allow you to span the branches multiple lines (i.e. open the parentheses on one line 
enter each line of code and close the parentheses on another line).   This multi-line 
behavior is not recommended because it slightly mangles the code and really doesn't 
save you any typing at all compared to an if statement.

Unless  In Ruby the  unless conditional statement operates as a "reverse"  if.  I say 
reverse because in an if, the main branch executes only if the conditional is true; in an 
unless statement, the main branch only executes if the provided condition is false. 
For example:

unless ("I am true." == "I am true."):
  puts "Something wonky!"
else
  puts "All is alright!"
end

→ All is alright!

Since "I am true." does indeed equal "I am true.", the main branch is not executed but 
the  else branch is.   This  structure doesn't  provide anything over an  if statement 
except to enhance readability of the code (e.g. it's much easier and casual to say "Do 
this unless this" rather than "Do this unless this is not this" and to avoid writing a lot 
of negative if's; keeping positive chi in your code is very important to the emotional 
health of Ruby). 

Statement Modifiers   The  if statement also offers a nifty piece of syntactic sugar 
called a modifier;  this construct allows you to tag an  if statement on the end of a 
statement and have it decide whether or not the statement is attached to should be 
executed.  For example:

thelma_louise = 13
puts "She's less than 15 alright!" if thelma_louise < 15
puts "She ain't more than 12, though!" if thelma_louise < 12

→ She's less than 15 alright!

As you can see, if you simply tag on an if statement to end of a line, it will evaluate the 
if statement first and execute the code if it finds that the if statement is true.  This 
construct replaces code like this:

if thelma_louise < 15:
  puts "She's less than 15 alright!"
end

with a  far  more concise and elegant solution.   Rubylicious.   This  construct  can be 
tagged on to begin/end blocks also.  For example:

begin
  puts "It's so true!"
end if (true == true)

→ It's so true!

Hustle and flow (control).   51



This is a very elegant solution for controlling big blocks of code rather than having a 
huge,  open  if statement  that  spans  500  lines  (especially  if  there's  that  one  end 
keyword you forgot to drop in).

The case Statement

If you haven't noticed, I'm all about having the neatest code in the least strokes (who 
isn't nowadays?).  It  gets really irritating really fast when you are testing the same 
value over and over again in a series of if and elsif statements that quickly add up to 
a  lot  of sloppy looking code.  It's a  good thing that there is  a  way to put all  those 
together  into  one syntactically sugarlicious block called a  case statement.   A  case 
statement comes in two forms in Ruby.  The first form is the "standard" way  case 
statements  operate:  you  have  a  "target"  variable  and  each  case  is  a  test  of  values 
against that variable.  For example:

the_tao = 1234

case the_tao
  when 666: puts "That's such a lie!"
  when 1337
    puts "Liarrrr!"
  when 32767 then
    puts "Whatevurrrr!"
  else
    puts "You are harmonized with the Tao."
end

→ You are harmonized with the Tao.

This form of the case statement simply tests the target value against the values in the 
cases; cases are formed using the when keyword followed by the test which is followed 
either by the word then or a colon (both of which are non-essential if the case starts on 
the next line); the  when keyword segments the cases so no "end" keyword is needed 
except to close the case block.  Each case is tested starting from the top; when a match 
is found the proper branch is executed and the block exits.  If nothing matches then 
the else clause is executed (just as in if blocks).

The second form of the case statement adds more flexibility by allowing you 
to  use  conditionals  like  if statements  and  removing  the target.   Even  though  the 
target is removed, you can still use them in the same way you would the first form:

enlightenment = 42

case
when enlightenment > 60:
  puts "You are too hasty, grasshopper."
when enlightenment < 40 or enlightenment == nil:
  puts "You are like the sloth, my friend.  Diligence is key!"
when enlightenment == 42:
  puts "Hello, Enlightened One."
else
  puts "Yeah, not quite, pal.  Maybe next time."
end

→ Hello, Enlightened One.

52   Hustle and flow (control).



As you can see, this form can still be used to compare a single variable, but allows for 
more robust comparisons than the first form.  Each comparison is checked, starting 
with the top case, first comparison, working to the right and down; when a case is 
matched (i.e. all  conditions needed for a case to be true are met including chained 
conditions) that branch is executed and the block exits.

A commonality between the two forms is their lack of "fall through"; in many 
programming languages, case blocks require some sort of keyword (usually break or 
something similar) which tells the application to keep checking the other conditionals 
after that block is finished.  For example, look at this C-style syntax snippet:

int my_number = 42;

switch(my_number) {

  case 41:
    printf("A little higher...");
    break;

  case 42:
    printf("You have found the answer!\n");

  default:
    printf("And have fallen into a hole in the C compiler!\n");
    break;

}

→ You have found the answer!

→ And have fallen into a hole in the C compiler!

If it's not evident from the code, the break keyword will exit the switch block if it is 
encountered.  This keyword is not needed in Ruby since it doesn't have fall through, 
but  since  C-style  languages  do,  the  default block  (like  Ruby's  else in  case 
statements) gets executed because there was no break in the block that evaluated to 
true (i.e. case 42).  As helpful as the fall through mechanism is, it can really be quite 
annoying when the lack of one break statement causes your entire application to come 
to a screeching halt.

LOOPS

Loops save your fingers  and brain a  lot  of  work by executing the same or slightly 
different  code  numerous  times,  responding  to  conditions  as  need  be.   Loops  are 
essentially a sequence of statements which you enter once but which may be carried 
out several times in succession a finite number of times, maybe once for each member 
of a collection or until some condition is met.  We'll cover both of these types in the 
coming sections.

Conditional Loops 

Conditional loops execute based on a provided conditional statement (i.e. the same 
conditionals used in  case,  if,  and  unless blocks); these loops come in two forms: 
while and until.  A while loop will execute only while a conditional is true:

Hustle and flow (control).   53



x = 0
while(x < 10):
  print x.to_s # print is like puts without a \n at the end
  x += 1
end

→ 0123456789

Each iteration, the conditional is checked; if it evaluates to true, the branch executes; 
otherwise, the block exits.  

In other words, it's as if you put an if statement at the top of the loop and the main 
branch is executed until the if statement becomes false.  The until loop has the same 
relationship as that of the unless statement to the if statement:

x = 0
until(x >= 10)
  print x.to_s
  x += 1
end

→ 0123456789

Each iteration of the loop, the conditional is checked just like a while loop, except in 
an until loop, the branch is executed if the conditional evaluates to false.  

54   Hustle and flow (control).

Figure 8: The while loop: setting the standard for looping since 1973.



Much like the  unless statement,  if  the conditional provided is  true then the main 
branch is skipped, and, in the case of the until loop, the block exits.

These loops are great if you are doing some sequential operation (i.e. doing 
ten  repetitions  of  the  same  task,  outputting  ordered  data,  or,  like  the  examples, 
counting),  but  they  have  their  pitfalls.   If  the  conditional  doesn't  meet  the 
requirements for the branch to be executed (i.e. true for  while and false for  until) 
before the first execution, the loop never runs; be aware of this possibility if you are 
manipulating variables in the loop that exist outside of the loop whose manipulated 
values are essential to your application's execution after the loop.  This condition can 
and  will  cause  problems,  so  make  sure  that  you  do  a  veritable  assortment  of 
verifications on your variables (more on this later).  

Another pitfall  that may rear its ugly yet somehow mildly bearable head is 
that  the  conditional  may  never  reach  a  state  where  the  loop  will  break  (i.e.  the 
condition in your while loop may never reach false) and thus put your program into an 
infinite  loop  and  lead  it  and  all  of  Creation  into  oblivion.   It's  been  said  that  the 
universe  actually  implodes  and  compresses  to  the  size  of  a  single  Pocky  if  this 
happens, but I can't verify that.  So, how do you prevent that from happening?  For 
starters,  make  sure  that  you  use  as  flexible  conditionals  as  possible  (e.g.  the  >= 
operator is probably a better idea than == if you're counting up simply because you 
never if by some freak accident it might go over your intended value; this isn't the best 
idea in all scenarios, but it should be considered) and make sure you interact with the 
conditional  value  (make  sure  you  actually  do  something  to  affect  the  conditional; 
you'd be surprised how many people forget that).

Hustle and flow (control).   55

Figure 9: I think the until  loop gets jealous of all the attention that people give while.



If you're a hardcore über 1337‐  programmer, you may be saying to yourself, 
"Yo, fool! I ain't gots to be worrying about that because I be using those fo' loops fo' 
rizzle!"  That may be true, and you'd be keeping it real in about any other language 
except Ruby.  That's right: Ruby doesn't offer a "for loop" in the traditional sense, but 
it does offer one that uses the keyword for...

Iterating Loops and Blocks 

In my life as a developer, I've seen some rather preposterous pieces of code; everything 
from  text  files  used as  high traffic databases all  the way to people reinventing the 
wheel at least 17 times during the course of their application development (news flash 
to  all  developers,  programmers,  and  hackers  out  there:  most  languages  have 
date/time manipulation routines, which means you don't need to write your own for 
your application and/or module.  Thank you.).  These people are honestly just making 
it far more difficult for themselves and everyone else; that's sort of the way I feel when 
I see people using conditional loops to grok a collection in languages that plainly offer 
something better.  For example,

my_array = [13, 1, 4, 5, 29]

i = 0

while (i < my_array.length)
  print my_array[i].to_s + " "
  i += 1
end

→ 13 1 4 5 29

would work, but is not the best answer (especially in Ruby).  Ruby offers a couple of 
ways to iterate a collection safely, easily, and efficiently: iterating loops.  The first of 
these is the for loop.  The for loop in Ruby, as noted before, isn't like the for loop in, 
say, C or its derivatives, but I feel it's even infinitely more useful.

The  for loop in Ruby behaves very similarly (almost identically) to the  for 
loop in Python: a collection is provided, and the for loop provides a local variable to 
hold each item as it iterates.  

56   Hustle and flow (control).



Let's look at a code example; we'll create an array of even numbers, and then print 
them out using an iterator.

my_evens = [2,4,6,8,10,12,14]

for my_int in my_evens
  print my_int.to_s + ", "
end

→ 2, 4, 5, 6, 8, 10, 12, 14,

This is like saying, "I want to create a local variable my_int for each object in my_evens 
and do something with it."  Every time the loop iterates, the next value in my_evens is 
copied into the variable my_int; this variable allows you to manipulate the item in the 
collection easily (and, since the original object is copied into that variable, you can 
manipulate it without risk of bit twiddling in the original collection).  

Hustle and flow (control).   57

Figure 10: Iterators make things much easier and safer than conditional  
loops when using collections.



The for loop is really just salacious syntactic sugar for an iterator; an iterator 
is simply a block of code that iterates over a collection provided by the each method of 
a class.  For example, let's look at the above example in the iterator form:

my_evens = [2,4,6,8,10,12,14]

my_evens.each do |my_int|
  print my_int.to_s + ", "
end

→ 2, 4, 5, 6, 8, 10, 12, 14

An iterator  is  formed  by  creating  a  begin/end block  (discussed  above)  but  using 
do/end as the initiator; you are essentially creating a special type of begin/end block 
that will be iterated for each item in the collection.  This type of loop naturally guards 
against the variable discord that you may encounter by incrementing an index using 
something  like  a  while loop  (i.e.  you  go  over  the  value  you  want  if  using  the  == 
operator,  your value never gets above the needed value if  using a  < operator, etc.) 
while  also  providing  a  more  natural  way  to  access  the  value  you  wanted. 
Unfortunately this convenience comes at the price of flexibility.  In a while or until 
loop you can alter how quickly your conditional reaches the state that allows the loop 
to break (also called step) by adding more than 1 to the value you're keeping track or 
something like that; this ability is severely limited in an iterator loop (i.e. it doesn't 
exist unless you want to use the next method somehow to make it happen).  Keep this 
in  mind  when  you  decide  which  type  of  loop  to  use;  it  can  greatly  affect  the 
performance and stability of your application.

Statement Modifiers

Loops offer a construct very similar to the if statement's modifier.  Loops are great 
ways to save time and code, but they aren't very "natural"; I mean when repeating a 
task (such as banging your head into a mirror out of sheer frustration) you typically 
don't think in the form  of a loop construct.

while(self.conscious == true)
  self.head_bang("mirror")
end

That's simply not how our mind usually works, and fortunately,  Ruby, in all  of its 
readable glory, has decided to bless us with the loop statement modifier construct. 
For example:

self.head_bang while self.conscious == true

This construct is not only more natural to read and say, but it is also more concise; you 
still have all the same functionality but in much less code and hassle.  This construct 
works with both  while and  until loops (but not any of the iterating loops); it also 
works with  begin/end blocks which allows you to do post-test loops (i.e. loops that 
always execute at least once before checking the conditional as opposed to the pre-test 
loops  that  we've  been  using).   For  example,  if  you  wanted  to  output  the  English 
translation of "Tora!  Tora!  Tora!" you could write:

counter = 0

58   Hustle and flow (control).



begin
  print translate("Tora! ")
  counter += 1
end until counter == 3

→ Briefcase! Briefcase! Briefcase!

In this setup, the block will always execute at least once regardless of the truth of the 
attached conditional (unlike if you simply use the while or  until loop).  Do keep in 
mind when using this construct  that  you are still,  at its  core, using the  while and 
until loop, which means that it is still susceptible to the same pitfalls and problems 
with  variables.   Make  sure  to  test  your  application  thoroughly  for  any  potential 
problems related to this.

Controlling Loops

Does it seem that loops have your application in a strangle hold?  They do seem to be 
hulking, domineering, unstoppable behemoths that stop only when they darn well feel 
like it.  Well, actually they probably just seem like really useful constructs that are hard 
to control without artificial bit twiddling in the conditional.  For example:

my_x = 115
my_y = 40
temp = 0

while(my_x < 150)
  if (my_x % my_y) == 0: # if the quotient is even
    temp = my_x
    my_x = 151
  else
    my_x += 1
  end
  puts my_x
end

my_x = temp
puts my_x

→ 120

That's  a  bit  dangerous  if  you  ask  me  (and  if  you're  reading  this,  you  just  might); 
artificially altering the conditional value can lead to some craziness in your application 
(i.e. accidentally skipped code, the variable being used outside of the loop without the 
temp value being stored back into it, etc.).  In Ruby, there are various keywords that 
allow you control the flow of loops.  The next keyword allows you to skip the current 
iteration,  while  the  break keyword allows you to exit  the current loop completely. 
Let's look at our previous example again:

my_x = 115
my_y = 40

while(my_x < 150)
  my_x += 1
  puts my_x
  if (my_x % my_y) == 0: # if the quotient is even
    break
  else
    next

Hustle and flow (control).   59



  end
end

puts my_x

→ 120

The usage of the next keyword in this example is rather inordinate (i.e. I should have 
simply let the loop iterate again rather than forcing it), but I wanted to demonstrate 
how the next keyword works.  This loop works just as before, except more concise and 
less bloated.  

The break keyword breaks the loop and continues on to the code after the loop just as 
if  the conditional had been met.   The  next keyword skips past  all  remaining code 
(which in this example wasn't much) to the end of the loop and continues on to the 
next iteration.  But, wait!  It gets fancier:

my_x = 115
my_y = 40

while(my_x < 150)
  my_x += 1
  puts my_x
  break if (my_x % my_y) == 0 
  next
end

puts my_x

→ 120

You can use a conditional modifier with the break or  next keywords!  And, yes, the 
next keyword isn't necessary, but I wanted to demonstrate two things.  Firstly, the 
keyword's usage (I know you probably understand it  by now, but another example 
never hurt anybody!).  Secondly, all code after  break is skipped.  The loop does not 
iterate again because the conditional attached to break was satisfied.

EXCEPTIONS

OK, so you're zipping along on an application, but all of a sudden you get this crazy 
error and you don't know how to handle it.  Maybe your users are 13 year old social 
rejects with more pimples than friends, and they feel the need to type in "YO d00D 
I"M  1337!!11"  in  a  field   in  your  application  that  is  supposed  to  be  all  numeric, 
effectively crashing your application.  Shall you just let  your application crash and 
burn?   Shall  its  cinders  smolder  forever?   Shall  you  never  see  glory  because  of 

60   Hustle and flow (control).

Figure 11: Break.  I always get a great degree of satisfaction from breaking a loop.  Take that sucker!



"TO01337ANdY" from Bumpkinville, IA?  Never fear, young neophyte!  Ruby has 
you covered!

Exceptions provide a handy way to deal with errors and other problems in 
your application in a way that is uniform and easy to implement.  All exceptions derive 
from the base class Exception; Ruby provides a number of built-in exceptions for you 
to use (or for your application to handle).  Here is a table of the current available built-
in exceptions:

Handling Exceptions

To handle an exception when one is raised, you must create a rescue block.  Let's take 
a  look  at  an  example  and  then  pick  it  apart  like  voracious  vultures  in  search  of 
delectable morsels of delight (or like some guys who just really want to know how to 
program in Ruby):

def method_of_doom
  my_string = "I sense impending doom."
  my_string.ah_ha_i_called_a_nonexistent_method
end

method_of_doom

→ ! NoMethodError

Now, to handle this exception properly:

def method_of_doom
  my_string = "I sense impending doom."
  my_string.ah_ha_i_called_a_nonexistent_method
rescue Exception:
  puts "Uhh...there's a problem with that there method."
end

method_of_doom

→ Uhh...there's a problem with that there method.

To create a rescue block, you simply place the rescue keyword at the beginning of a 
line followed by the exception class you would like to handle (Ruby offers a number of 
built-in exceptions for you to use; check the Ruby documentation for a full list).  I used 
Exception because it catches any and all exceptions, but you can specify numerous 
rescue blocks to handle different, more specific types of exceptions and/or numerous 
exception types can be handled by a single rescue block:

def method_of_doom
  my_string = "I sense impending doom."
  my_string.ah_ha_i_called_a_nonexistent_method
rescue NoMethodError:
  puts "You're missing that method, fool!"
rescue Exception:
  puts "Uhh...there's a problem with that there method."
end

method_of_doom

→ You're missing that method, fool!

Hustle and flow (control).   61



If you specify multiple rescue blocks, Ruby follows the first one it encounters that is 
able to handle an exception of same type as the raised exception.  If we had specified 
the  Exception block  first  as  opposed to  the  NoMethodError block,  we would have 
gotten the same output as the first example.  If no usable rescue block is found in the 
current context (i.e. current block of code, current method, etc.), Ruby works its way 
up the call stack to see if it can find a suitable rescue block (i.e. it works its way from 
the offending method up to the method called it to the method that called it and so on). 
If  no  suitable  rescue block  is  found  before  Ruby  takes  its  search  to  the  main 
application method, then the application thread exits and a message is shown that is 
something along the lines of, "I pity the fool that be missin' an exception handler!" 
followed by a series of loud crashes and breaking of wind.

A rescue block can specify a variable name when it is created in order to hold 
a more detailed explanation of the error.  Again using our previous example:

def method_of_doom
  my_string = "I sense impending doom."
  my_string.ah_ha_i_called_a_nonexistent_method
rescue NoMethodError => e:
  puts "PROBLEM: " + e.to_s
rescue Exception:
  puts "Uhh...there's a problem with that there method."
end

method_of_doom

→ PROBLEM: undefined method [and so on...]

Leveraging this ability makes it far easier to know exactly what's going on, where, and 
sometimes how to fix it.

A rescue block also provides a few other features that aid in making sure that 
even if your application does choke, it will still hopefully run as smoothly as possible. 
The first of these features is the  else caluse that you can tag on to a  rescue block. 
This block will execute if there are no exceptions raised.  For example:

def no_problemo
  x = 0
  x += 19
rescue Exception
  puts "Oh noes!"
else
  puts "All clear!"
end

no_problemo

→ All clear!

This is a useful feature, but be careful what you put in there.  The rescue block in the 
enclosing code won't catch any exceptions raised in the else clause, so you may need 
to catch them later up the call stack or relegate the else block to menial tasks to avoid 
the risk of causing worse problems.

62   Hustle and flow (control).



The second feature offered by rescue blocks is the ensure clause; this clause 
holds code that is always executed (i.e. regardless of the presence exceptions or not). 
For example:

def dance_a_jig
  "I'm a dancin'!"
  "Do si do!"
  rebel_yell = "yee haw!".upcase!
rescue Exception
  print "I fell down, dang it!"
else
  print rebel_yell
ensure
  print "  That's all folks!"
end

dance_a_jig

→ YEE HAW!  That's all folks!

The ensure clause is always executed no matter what; this construct is very useful for 
closing  files  that  you  have been reading  from  or  writing  to,  closing  open network 
connections, or making sure all your resource handles have been cleaned up.  If you 
put these sorts of things in ensure clauses, they will always get done and cut down on 
problems you may have with resource access if your application crashes.

Rescue Statement Modifier  Much like conditionals and loops, rescue blocks can be 
used as statement modifiers.  For example:

not_an_object.do_something rescue puts "Crash!"

→ Crash!

Note you can't specify what sort of exception to rescue from, but that is better left to 
"formal" rescue blocks anyhow.  You can assign values using this construct also:

my_value = not_an_object.give_a_value rescue "Burn!"
puts my_value

→ Burn!

This pitiful example doesn't show a real world case of course, but this construct is 
useful  if  a  small  adjustment  in  value  can  correct  most  any  exception  (a  rare  but 
possible case).

Retry  Sometimes you just need a do-over.  That loop didn't do well for you, or maybe 
that variable still wasn't clear on his motivation for this scene.  Either way, you need to 
be able to redo part of your code in hopes that they will simply go better next time. 
This is where the retry keyword comes in; let's say you were building a fictional web 
browser:

def make_request
  if (@http11)
    self.send('HTTP/1.1')
  else
    self.send('HTTP/1.0')
  end
rescue ProtocolError
  @http11 = false

Hustle and flow (control).   63



  retry
end

You send the HTTP 1.1 headers, but the server on the other end doesn't like that, so it 
vomits a  ProtocolError.   Instead of rolling over and dying, you disable HTTP 1.1, 
retry the block, and your application is smart enough to switch to HTTP 1.0 instead. 
Fancy.  Using rescue and retry, you can make an attempt to fix any errors that may 
cause exceptions and retry the block again.  Keep a close watch on this though; it can 
cause some serious problems if the problem is never fixed the same block of code is 
looped over again and again because your application is retrying it.

Raising Exceptions

So now that you know how to handle exceptions, I think it's a fine time to put you out 
to pasture with your own exceptions.  Raising your own exceptions is important if 
there are problems that will arise that won't necessarily cause a problem with Ruby 
itself.  For example, let's take a look at a method that may exist in class Person:

def define_gender(gender)
  if (gender.upcase != 'FEMALE') && (gender.upcase != 'MALE')
    raise "You specified something wonky for gender!"
  end
end

my_guy = Person.new
my_guy.define_gender("nobody knows")

→ ! RuntimeError ("You specified something wonky for gender!")

Even though it  won't  cause  a  problem with  Ruby itself,  you obviously don't  want 
someone to specify something abnormal for gender (well, maybe you do, but that's 
just  weird).  If  such a condition arises, you can drop the  raise keyword on a line 
followed by a message and Ruby will raise a new RuntimeError and  set its message to 
the one you provide.  The raise keyword (or its uncouth cousin from Wales, the fail 
keyword) can be called a number of ways:

raise "I crashed!  This message should be more informative!"
raise
raise NoMethodError, "That method ain\'t here!", caller

The  first  form  you  are  already  familiar  with  (i.e.  provide  a  message  to  a  new 
RuntimeError); the second form will re-raise the current exception so it can be passed 
further up the call stack or raise a new RuntimeError (with no message) if there is no 
exception.  The last form is one you should use most constantly because it allows you 
to specify an exception type, a message, and a stack trace object (which is usually just 
caller, a reference to the Kernel.caller method).  Good software practice says that 
you should be as specific as possible with your exceptions; instead of just throwing 
RuntimeErrors all the time, try to throw a TypeError if the provided object isn't the 
right type or your own exception type to match your needs (e.g. it would have been 
better  to  have  raised  an  GenderError or  some  such  in  our  example  rather  than  a 
RuntimeError).

64   Hustle and flow (control).



My Own Exception 

So how do you create your own exception types?  It's really quite simple in Ruby; let's 
use our example from before:

class GenderError < RuntimeError
  attr :what_they_put

  def initialize(their_input)
    @what_they_put = their_input
  end
end

To create a new exception, you simply derive from any of the exception classes (e.g. I 
derived from RuntimeError, but you can derive from TypeError,  NoMethodError, or 
even  Exception).   So,  let's  update our  code above to use our new, more practical 
exception:

class Person
  def define_gender(gender)
    if (gender.upcase != 'FEMALE') && (gender.upcase != 'MALE')
      raise GenderError.new(gender), "Invalid input!"
    end
  end

  def initialize(gender)
    self.define_gender(gender)
  rescue GenderError => bad
    puts "You gave me some bad input: " + bad.what_they_put
    raise
  end
end

my_guy = Person.new("Who knows?")

→  You gave me some bad input: Who knows?

→ ! GenderError ("Invalid input!")

Notice that we raise the exception in define_gender, we handle it in initialize, and 
then  pass  it  up  the  stack.   In  initialize,  we  output  an  attribute  held  in  our  new 
exception class; since exceptions are objects and thus have classes behind them, when 
you create your own you can add methods and attributes to it as I did to hold the value 
of the user's input.  This is useful if you would like to provide more data to exception 
handlers  or  if  you  would  like  to  provide  help  in  recovering  from  exceptions  by 
providing methods in the exception.  

Throw and Catch

If you're a C# or Java programmer, you might have just gotten excited by the prospect 
of some familiarity in this area, but don't count your proverbial eggs before they hatch. 
In Ruby, a catch block is given an identifier as an argument; you can then "throw" this 
identifier  in  the ensuing code.   Ruby will  then look up the stack to see where the 
matching catch is, and if it's found, Ruby will break normal processing and exit the 
catch block.  This sounds more confusing than it is, so let's look at an example:

princess = DamselInDistress.new

Hustle and flow (control).   65



catch :hes_a_failure do
  # YAY!  Someone's here to save her...
  print "My prince is here!  "

  # OH NO!  The villain has eaten his liver!  He dies!
  princess.is_saved = false

  if (princess.is_saved == true)
    puts "Hooray!"
  else
    puts "Poo!  Not again!"
    throw :hes_a_failure
  end

  puts "I'm going to sleep until the next guy..."

  # Nap...
end

→ My prince is here!  Poo! Not again!

A  catch block  is  started  by  placing the  catch keyword,  an identifier,  then  the  do 
keyword on a line; the identifier is used with the throw keyword  and can either be a 
symbol or a string.  The code is run until a matching throw statement (i.e. the throw's 
identifier  matches the  catch's  identifier)  is  encountered  (if  one  is  encountered)  in 
which  case  the  catch block  exits  without  executing  any  code  after  the  throw 
statement.  In the example, you can see this happen in that "My prince is here!" and 
"Poo! Not again!" are output but "I'm going to sleep until the next guy..." is not; the 
block exited after the matching throw statement (i.e.  throw :hes_a_failure) was 
found.  This construct is extremely useful if you need to simply exit the code block if an 
error occurs or if your code is buried in deeply nested loops and you want to break out 
of them quickly and easily.

This Chapter   

You learned about Ruby's flow control mechanisms.  You learned...

• about if/unless statements and conditional operators.

• about  loops,  both  conditional  and  iterating,  and  how  to  use  the  most 
effectively.

• about exceptions and their usage.

66   Hustle and flow (control).



4
The System Beneath...

Recent advances in language libraries have had people ditching Perl and Bash scripts 
in favor of a more friendly solution like Python or Ruby.  This is mostly because you 
can  accomplish  the  same  tasks  with  less  effort  and  more  robustness  with  these 
languages (it's also probably because Perl and Bash suck).  Thanks to its libraries, 
Ruby can interact with the system just as well as these more esoteric solutions.  Let's 
take a look at some of the system libraries and functions built into Ruby.  You'll be 
trading in your copy of Perl Cookbook within the hour!

FILESYSTEM INTERACTION 

The  File class in Ruby is very rich compared to other similarly featured languages 
(i.e. Python).  It not only has more methods, but the methods which are comparable 
are more logically named (e.g. what does unlink do in Python?  Oh, it deletes?  Why 
not call it  that!?).  Ruby's  File class's general power and ease of use compared to 
many other languages should bring comfort to your heart, much like a warm bowl of 
soup and classical music can do on a snowy day.

First, let's look at what you can find out about a file.  Does it exist?  What 
kind of file is it?  Is it a file?  Here are a few examples (these assume there is a file 
named "textfile.txt" in the current directory):

File.directory?("textfile.txt") →  false
File.file?("textfile.txt") →  true
File.exists?("textfile.txt") →  true
File.size?("textfile.txt") →  2063
File.extname("textfile.txt") →  ".txt"
File.extname("igotnoextension") →  ""

I won't insult your intelligence by explaining what each of these mean, but I would like 
to note two things.   First, the size? method returns  the size in bytes, not kilobytes.  It 
seems silly, I know, but that frustrated the piss out of me when I first started using it 

The System Beneath...   67



(mostly because I'm dumb, I know, but I'm trying to save you some frustration here!). 
Second, the size? method will return nil if the file size is zero (another gotcha that 
bothered me until I figured it out).  

You can also use the File class to find information about metadata such as 
ownership and permissions:

File.executable?("textfile.txt") →  false
File.readable?("textfile.txt") →  true
File.writable?("textfile.txt") →  true
File.owned?("textfile.txt") →  true
File.grpowned?("textfile.txt") →  false
File.setgid?("textfile.txt") →  false
File.setuid?("textfile.txt") →  false

The  executable? (which  determines  if  the  user  has  the  ability  to  execute  a  file 
according to  filesystem  permissions,  not  whether  or  not the file  is  an executable), 
readable?,  and  writable? methods  have  companion  methods  called 
executable_real?,  readable_real?, and  writable_real? (respectively, obviously) 
which  make sure  that  the owner of  the process  has that ability  with that file.   Of 
course, if you own the file it probably doesn't matter.  You can find out if you own it 
using the owned? method, which will return true if the process owner indeed owns 
the specified file.  Normally the grpowned?, setgid?, and setuid? are very helpful in 
finding out certain metadata about a file, but these methods don't apply to and will 
always return false on operating systems that don't support them (I'm looking right 
at you Windows!).  For those not in the know, on UNIX filesystems a file is owned by a 
user in a group rather than "just" a user; the grpowned? gains you access to this data. 
The  setgid? and  setuid? check for a bit that  is  set on a file's filsystem entry that 
allows you to change the user and/or the group when accessing that file (this helps 
when a user needs elevated privileges for a certain task).  Again, these methods allow 
you to see if these bits are set, but if you're on Windows or something else that doesn't 
support them then they always return false.

Reading from a file  

I can hear you saying, "Who cares about that crap?!  I need to read a file.  I made the 
file.  I know all that crap about it!  Tell me how to read it or I challenge you to a knife 
fight, right now, behind the Waffle House!  You and me, pal!  We're taking it to the  
matresses!"  I would like to now kindly respond to your anger with this little tidbit:

myfile = File.open("textfile.txt", "r")
myfile.each_line {|line| puts line }
myfile.close

Using the File#open method, you can open a file and create a new File instance.  The 
first parameter for open is the file path (either relative or absolute), and the second 
parameter  is  the  file  mode.   You  can  view  the  table  of  options  you  have  for  this 
parameter in the table at the end of this section; this parameter defaults to reading if 
you don't specify.  After you call open, you can use the each_line method to grab each 

68   The System Beneath...



line and print it out, play around with it, whatever you want to do inside the block. 
You can optionally feed each_line a parameter that will act as the line ending in place 
of "\n"; if you, like me, tend to end each line of text with the word "pastry" you can 
respect this feature.  Always be sure to call the close method if you are opening files 
this way.

"But,  Dad!"  you  whine.   "I  don't  wanna  call  close!"   Well, 
Son/Daughter/Androgynous  Offspring,  Ruby  can  help  you  cure  your  incessant 
moaning:

File.open("textfile.txt") do |myfile|
  myfile.each_line {|line| puts line }
end

This does the same thing, but now the file stream is automatically closed when the 
enclosing block exits.  "Wow!" you exclaim.  I'm glad you're amazed, but it gets better:

IO.foreach("textfile.txt") {|line| puts line }

Using the IO#foreach method does the same thing as the previous two examples, just 
simpler, more compact, and far more beautifully.  It opens the file specified, feeds it 
line by line into a block, then closes it.  Mmm...now that's Rubylicious.

Writing to a file  

Your options for writing to a file are numerous; they all  accomplish essentially the 
same objective but in slightly different ways.  The first (and most obviously named) 
way I'd like to cover is the write method.  It goes something like this:

File.open("textfile.txt", "w") do |myfile|
  myfile.write("Howdy!")
end

You open a file with the File#open method, create an enclosing block, and simply call 
the  write method on the file instance created by the block.  You can do writing the 
same way I showed you reading the first time (i.e. without  a block at all and calling 
close), but I thought that would be needlessly redundant to include it here.  You can 
write any sort of data to a file as long as it can be converted to a string (i.e. it has a to_s 
method);  if  it  can't  be  converted  to  a  string  Ruby  will  simply  issue  it  a  string 
representation to the effect  of  "#<ClassName:SomeData>".  Other  methods such as 
print and puts can easily be  plugged into where write is; they take the same number 
of parameters and behave essentially the same way (except that  puts will tag a new 
line on the end of the string when it is written).

Another way of writing to a file is utilizing the << operator; if you've ever used 
IOStream in C++ then you should feel right at home with this:

File.open("textfile.txt", "w") do |myfile|
  myfile << "Howdy!\n" << "There are " << count << "pandas!"
end

The System Beneath...   69



Opening  the  file  is  the  same  as  always,  but  now  instead  of  calling  a  method  and 
feeding  in parameters  (at  least  in  the traditional  sense) you are now  using  the  << 
operator.  It behaves the same as the other methods (i.e. it converts the data to a string 
if it is not a string and writes it to the file) so there shouldn't be any surprising parts 
there.   BOOGABLARGABOO!  Okay,  maybe that  surprised you, but  nothing else 
should.

More file operations  

The File class also supports a number of other file operations that promote all sorts of 
filesystem hooliganism.  Here are a few:

File.delete("textfile.txt")
File.rename("textfile.txt", "textfile.txt.bak")
File.chown(nil, 201, "textfile.txt")
File.chmod(0777, "textfile.txt")

The first two method's names should give away their function.  If the proverbial cat is 
not  out  of  the  bag,  they  delete  and  rename  the  provided  files  (with  the  renamed 
filename fed in as the second parameter).  The delete method will return the number 
of files deleted (i.e. 1 for this case).  

The last two methods may be a little confusing if you are not up to snuff on 
your UNIX/Linux filesystems and their associated commands.  The chown command 
allows a user with superuser privileges to change the owner of a file (or the owner may 
change the group ownership to any group of which he/she is a member); note that the 
chown method takes numeric owner and group IDs rather than string names (which 
the command line version allows).  The chmod method allows the owner of a file (or a 
superuser) to change the permissions of a file (i.e. which users/groups can read, write 
to,  or  execute  a  file);  the  first  parameter  is  a  bit  pattern  which  represents  the 
permissions on the filesystem.  Check Appendix A for URLs with more information on 
UNIX filesystem metadata (including bit patterns to be used with the chmod method).

70   The System Beneath...



FILE ACCESS MODES
r   Read-only access; starts at beginning of file (default)

w   Write-only; truncates existing file to zero length or creates new file

a   Write-only; starts at end of existing file or creates new file

r+   Read-write; starts at beginning of file

w+   Read-write; truncates existing file to zero length or creates new file

a+   Read-write; starts at end of existing file or creates new file

b   Binary file mode; may appear with any of the above options (Windows only)

THREADS AND FORKS AND PROCESSES, OH MY!

Don't  you  hate  it  when you  get  slapped  with  an  hourglass/beachball  when you're 
doing something simple?  It's not like your computer is overloaded or anything; what's 
the deal?  The deal  is  that  the programmer (probably)  didn't  use a  multithreaded 
design, so everything it does happens in one thread.  What's a thread you ask?  I'm 
glad you asked (if you didn't ask because you already know, skip this section).

Think of a thread as a way of telling your computer you want it to multitask. 
Let's say you're developing a WinAmp/iTunes/Foobar clone, and you want to be able 
to  play  music,  have  wicked  awesome  visualizations,  and  grab  CDDB  information 
about your tracks all at the same time.  This isn't going to work very well in a single 
threaded setup because you will have to wait for CDDB to respond before your track 
plays, and then you have to worry about trying to draw and play music at the same 
time.  The easiest solution would be to split each task off into its own thread.  The 
music would play in its own thread, completely untouched by the other things going 
on; the visualizations would draw in their own thread, not interfering with the music; 
CDDB could be contacted independently of the other two, so that if you have a slow 
Internet connection, downloading the data won't  bother the playback.  Threads let 
your computer do more things at once, and are pretty important if you plan on doing 
anything remotely complicated with Ruby.

Ruby thread basics  

Using threads in Ruby is as simple as passing a block of code to the  Thread class's 
constructor.  For example, let's create three threads.  They will each do something at 
different intervals (e.g., print some text to the screen).

first = Thread.new() do
  myindex = 0

  while(myindex < 10):
    puts "Thread One!"
    sleep 3
    myindex += 1
  end
end

The System Beneath...   71



second = Thread.new() do
  myindex2 = 0
  while(myindex2 < 5):
    puts "Thread Two!"
    sleep 5
    myindex2 += 1
  end
end    

third = Thread.new() do
  myindex3 = 0

  while(myindex3 < 2):
    puts "Thread Three!"
    sleep 10
    myindex3 += 1
  end
end  

first.join()
second.join()
third.join()

→  Thread One!
→  Thread Two!
→  Thread One!
(and so on...)

To get threads going, you first need to create an instance of the Thread class and pass 
a block of code to it; our code simply prints some text and then makes that thread 
pause a few seconds using the  sleep method.  The calls to the  join method aren't 
necessary to make this work; the threads will run by themselves and be killed when 
your program ends.  The benefit of calling join is that your program will wait until all 
threads that have been joined exit (i.e. the code has finished and the block exits).  If 
you take the join calls out of the above program, each thread will print once and exit 
because the main thread exited; as it is above (i.e., with the join calls), it will run for 
about 30 seconds, with each thread printing a few times.

The join method is great, but what if you don't want a thread to run forever 
after you exit?  Even further, what if you want to give it time to try to shut down after 
your program ends?  Fortunately, the join method is pretty smart; you can feed it an 
integer as a parameter and it will use that as a timeout.

time_me_out = Thread.new() do
  while(true):
    puts "Keep loopin' loopin' loopin'..."
    sleep 5
    puts "Keep that script on loopin'!  RAWHIDE!"

72   The System Beneath...

Figure 12: Threads allow you to do work in parallel to the main thread: multitasking for Ruby.



    sleep 5
  end
end  

time_me_out.join(15)

→  Keep loopin' loopin' loopin'
(5 second wait)

→  Keep that script on loopin'!  RAWHIDE!
(5 second wait)

→  Keep loopin' loopin' loopin'
(and so on...)

Since we gave join a timeout of 15 seconds, the script/song will only go for 15 seconds 
(since  as  soon  as  the  thread  is  joined,  the  main  thread  exits;  toss  in  a  loop  or 
something that runs for a while below it to make it run a little longer).

Controlling threads  

Threads offer a few methods for controlling themselves.  The first of these methods is 
pass, which will tell the thread scheduler to pass the execution to another thread.  For 
example, let's say you have two threads and you'd like them to print things out and 
pass the control to each other as they do.  Let's spell "weal" using two threads!

t1 = Thread.new { print "w"; Thread.pass; print "a" }
t2 = Thread.new { print "e"; Thread.pass; print "l" }

t1.join
t2.join

→  weal

The pass method basically tells the current thread to hang out for a second while the 
another thread does its thing.  In the example, the threads switch off because they 
pause themselves to allow another thread to execute.

Another  method  that  is  used  to  control  threads  from  within  is  the  stop 
method.  This method simply stops the thread's execution, which can be started again 
at a later time.  The stop method is really useful for situations where a thread needs to 
pause  until  you  can accomplish  another  task.   Let's  say  you were  designing some 
robotic sailors, and the first mate couldn't drop anchor until the captain says it's okay 
to do so.  You'd probably do something like the following.

mate = Thread.new do
  puts "Ahoy! Can I be dropping the anchor sir?"
  Thread.stop
  puts "Aye sir, dropping anchor!"
end

Thread.pass

puts "CAPTAIN: Aye, laddy!"

mate.run
mate.join

The System Beneath...   73



→  Ahoy! Can I be dropping the anchor sir?
→  CAPTAIN: Aye, laddy!
→  Aye sir, dropping anchor!

Rumor has it that is how the Love Boat actually started: robotic sailors.  Anyhow, the 
stop class method stops the current thread, but as you can see in the example, the run 
instance method will restart it (remember: stop is a class method, run is an instance 
method).  The thread can then be joined to continue on its merry little way.

Threads can be altogether  exited also.   You can do this one of  two  ways: 
either from within using exit or the outside using kill.

homicide = Thread.new do
      while (1 == 1):

puts "Don't kill me!"
Thread.pass

      end
    end

suicide = Thread.new do
    puts "This is all meaningless!"
    Thread.exit
   end

Thread.kill(homicide)

→  Don't kill me!
→  This is all meaningless!
→  Don't kill me!

They work the same, they just accomplish it different ways.  It's usually better practice 
to kill a thread off from within simply because you know when and where it will be 
killed; killing threads off at will from wherever can lead to some serious confusion, 
and frankly, needless killing of innocent threads.

Getting information from threads  

There are a few methods that can be used to grab information about threads.   The first 
of these being  Thread.current and  Thread.list.  The  current method, of course, 
gives you access to the current thread.  The  list method lists all  threads that are 
runnable or stopped.  If you would like to get some information about these threads, 
then you can call the instance methods alive? and status.  The alive? method will 
tell you whether or not the thread is active or not; it will return  true if the thread is 
running or sleeping and  false if it has exited or is stopped.  The status method will 
return  "run" if  the thread is running as normal,  "sleep" if  the thread is sleeping, 
"aborting" if the thread is aborting, nil if terminated with an exception, and false if 
the thread terminated normally.  Testing whether or not a thread is simply runnning 
can be done using the stop? method.  For example:

mythread = Thread.new { Thread.stop }

mythread.stop? →  true
Thread.current.stop? →  false

74   The System Beneath...



Ruby returns true if the thread is stopped or sleeping; otherwise it will return false. 
You can also get the value returned from a thread using the value method.

calculator = Thread.new { 12 / 4 * 3 }
calculator.value

→  9

This is excellent for long calculations whose value isn't needed right away; doing them 
this way lets you run them on another thread so they don't interrupt the main thread 
and the execution of your program.

Processes, the other way to do stuff

Sometimes you need to spawn a new process altogether.  Whether you need to execute 
a  third party  program or  just  invoke  another  Ruby instance  that runs your script, 
spawning external processes can be pretty important at times.  Ruby offers a few ways 
to spawn and control new processes.

The  system method  PHP programmers rejoice!  Ruby has a  system method that 
operates like the PHP system method.  Perl programmers may also rejoice, as Ruby 
also supports backtick notation for starting external processes.  For those of you who 
are unfamiliar with both, let's just look at an example.  

system("cat /etc/passwd")

extern = `whoami`

puts ("Your username is #{extern}.") →  jeremy

The functions of  these methods  is  fairly  obvious.   The  system method spawns an 
external application in a subprocess; it returns true if it is exited successfully and false 
otherwise (with the exit code in  $?).  The unfortunate thing about  system is that it 
vomits  the  output  on  to  wherever  your  application's  output  is  being  streamed  to, 
which means you can can't capture it either.  That's where the backticks come in; they 
also spawn an application in a subprocess but also allow you to capture its output.

Pipe dreams  The system method works well enough in a lot of cases, but what if you 
need provide some interactivity with the application?  Say you need to give it some 
input or perhaps it gives you delayed output and you'd like to start processing it before 
it's done executing.  Ruby offers the IO.popen method that does just that.

The  popen method will  spawn an application and then give you a stream 
which you can read from and write to just like any other stream (e.g., file stream).

rb = IO.popen("ruby", "w+")
rb.puts "puts 'Whoa!  Radical subprocess, dude!'"
rb.close_write

puts rb.gets

As  you  can  see,  you  open  the  pipe  with  popen just  as  you  would  a  file  stream, 
specifying a target and access mode (which are the same access modes for files).  You 
can then use puts to write to to the stream and any other stream method (e.g., gets, 

The System Beneath...   75



read, etc.).  Do be aware that the close_write call was required for me.  I'm not sure 
if this a platform issue or not, but it might be safe to just go ahead and throw it in there 
for good measure.

Independent  Execution   If  you're  on  a  machine  that  implements  fork  (i.e.,  not 
Windows) then you can use the  exec method to execute things in a less hands on 
method while still retaining a little control.  

exec("apachectl restart") if fork.nil?
# restarting apache...
Process.wait # Wait for the process to exit (optional)

This  has  the  same  basic  effect  as  using  system,  except  that  you  can  tell  your 
application to wait until that process is done using Process.wait; this is a good idea if 
you're  running  a  subprocess  that  could  cause  irreparable  damage  if  exited 
prematurely (e.g., moving files or something like that).

FOR THE ENVIRONMENT!

Accessing much of  the environment  that  your  Ruby program  is  in  is  as  simple  as 
raising your Planeteer ring to the sky and calling down your personal power.  Wait, 
that's not right.  It's as simple as using a few neat functions that allow Ruby to access 
environment variables, program arguments, and a bit about Ruby's own environment. 
The power is yours!

Environment variables and the like

It's  easy  to  access  environment  variables  in  Ruby;  if  you've  ever  used  PHP  or 
something similar to access environment variables, it's very much the same concept in 
Ruby.

ENV['SHELL'] →  /bin/sh
ENV['HOME'] →  /home/mrneighborly
ENV['USER'] →  mrneighborly

The above values are fairly common if  you're on a  Linux-type system; if  you're on 
Windows they change a bit.  For example, on Linux USER is the environment variable 
holds your username, but on Window this value is placed in USERNAME.  The other two 
example values evaluate to  nil.   I  suggest that  if  you're going to use environment 
variables, that you pop open  irb and do two things.  First, make sure the value you 
want to use is valid on the platforms you'll be using it on.  Secondly, call up the ENV 
collection and look at all the values available.  If the value you planned on using isn't 
available, an alternate equivalent might be (e.g. USER and USERNAME).

To write to an environment variable, you simply assign a value much like you 
would a normal variable.

76   The System Beneath...



ENV['USERNAME'] = 'dontdothis'
puts ENV['USERNAME']

→  dontdothis

Your changes to environment variables are inherited by any child processes that you 
spawn, but they do not propagate back up to the parent of the Ruby application.  All of 
your changes stay local to your application.  If need be, you could spawn a process to 
use a command like set or export to change it in the shell.

The command line and you

Most Ruby scripts are invoked from the command line; this means that, if need be, 
you can pass arguments to it on the command line.  For example, if you write a text 
editor, you could pass the file name you want to open to it on the command line (e.g. 
myeditor.rb myfile.txt) rather than having to use File -> Open or Ctrl+O or whatever. 
Perhaps you remember when we installed Ruby way back when, I had you type ruby 
-v, where Ruby is a command line argument. Ruby's faculties for accomplishing this 
very same thing are fairly simple to employ; you are given a global array, ARGV, to do 
with what you wish.

ARGV.each{|arg| puts "Arg: #{arg}; "}

If  you were to invoke the above script with a few arguments, you would see them 
printed out sequentially.

ruby argv.rb "My args!" 123 19

→  Arg: My args!; Arg: 123; Arg: 19;

You can use this feature to gather information (e.g. filenames, numerical parameters, 
etc.) as I have done here, or you could use it to allow the user to specify command line 
switches (like -v on the Ruby command).  

Ruby and its little corner of your computer

In the greater ecosystem of your computer, Ruby has its own little microcosm.  When 
loading libraries and such, Ruby doesn't  just  magically know where they are; their 
paths  are  part  of  Ruby's  environment  configuration.   Use  the  following  Ruby 
invocation to see where Ruby looks.

ruby -e "puts $:"

On a typical Windows installation, you might see a list very similar to one like this.    

C:/ruby/lib/ruby/site_ruby/1.8
C:/ruby/lib/ruby/site_ruby/1.8/i386-msvcrt
C:/ruby/lib/ruby/site_ruby
C:/ruby/lib/ruby/1.8
C:/ruby/lib/ruby/1.8/i386-mswin32
.

As you can see, Ruby looks in multiple locations typically within the Ruby directory; 
also note that it  is version specific (i.e. it  only looks at libraries installed in the 1.8 

The System Beneath...   77



directory since we are using 1.8 here).  The results on a Linux or OSX box should be 
similar; simply replace "C:/" with something like "/usr/local/lib/" or "/usr/lib/" 
and you should get a very similar list.

You can also gather some information about how Ruby was built and in what 
environment.   This  information  can  be  useful  is  a  bug  exists  for  a  specific  build 
environment, and you want to see if a problem you are experiencing might be a result 
of that bug.  This information is written to the Config module in the file rbconfig.rb 
in the  library directory, usually in a directory under that which is labeled by the build 
environment (i.e. i386-mswin32).  You can access this information programmatically 
also (since it is part of the library).

include Config

CONFIG['host_os'] →  "mswin32"
CONFIG['target_os'] →  "mswin32"
CONFIG['libdir'] →  "C:/ruby/lib"
CONFIG['build_cpu'] →  "i686"

Since the Config module is exposed, you can simply include it and call values from the 
global constant hash CONFIG to use them.  Now the next time someone calls you a 
liar and tells you that can't possibly be running Ruby on an Apple IIe, you can prove 
them wrong.  Dead wrong.

WIN32 AND BEYOND.

Ruby  is  typically  associated  with  the  UNIX-based  operating  systems;  heck,  until 
about  a  year  ago,  Matz  himself  was  prone  to  kicking  you  in  the  teeth  for  even 
mentioning Windows and Ruby in the same sentence.  Fortunately, recent activity has 
promoted  Windows to  a  position  of  (at  the  very  least)  tolerance  within  the  Ruby 
community,  evidenced  in  projects  such  as  the  One-Click  Ruby  Installer 
(http://rubyinstaller.rubyforge.org/)  and  the  wonderful  no-install  Rails  project, 
InstantRails  (http://instantrails.rubyforge.org/).   Ruby libraries  for  Windows have 
also been enhanced.  There are a number of them available (search RubyForge if you'd 
like to see a sampling), but I want to focus on the Win32API, Win32, and WIN32OLE 
modules in the standard library.

API

Many applications today are directly tied to the Windows API.  Many tasks such as INI 
file  interaction  are  much  easier  to  accomplish  with  the  Windows  API,  and 
mechanisms like printing are only accessible through these channels.  As such, when 
replacing current functionality in another language with Ruby code or when trying to 
use these mechanisms in your Ruby code, your only choice is to figure out a way to get 
Ruby and the Windows API talk to each other.  Ruby offers the Win32API library to 
help ease the pain of this integration.

78   The System Beneath...

http://instantrails.rubyforge.org/
http://rubyinstaller.rubyforge.org/


The Win32API module allows you to make calls to any Windows API module 
(e.g.  kernel32,  user32,  and  so  on).   You  can  make  these  calls  by  instantiating  a 
Win32API object  and calling the call  the method on it.   For  example,  let's  say  you 
needed  to  read  from  and  write  to  INI  files that  are  used  by  another  part  of  your 
organizations system.  These INI files house login information other essential bits that 
let the applications access mutual resources; as an example, let's build a little test file.

[database]
login = dbuser
password = foobaz 

[fileshare]
username = shazbot
location = //server/path

Because of performance reasons (i.e. you don't want to write the regular expressions 
to  parse  the  INI  file)  you  decide  to  use  the  Windows  API  function 
GetPrivateProfileString to  parse  out  values.   To  use  GetPrivateProfileString 
within  Ruby,  you  need  to  first  look  at  the  function  definition  and  the  function 
definitions  of  any  related  functions  you  will  need  (in  this  case,  we  will  need  the 
lstrlenA function also).  

DWORD GetPrivateProfileString(
  LPCTSTR lpAppName,
  LPCTSTR lpKeyName,
  LPCTSTR lpDefault,
  LPTSTR lpReturnedString,
  DWORD nSize,
  LPCTSTR lpFileName
)

int lstrlen(
  LPCTSTR lpString
);

Now that we have the parameters and return types of these functions, we have all the 
information we need to contruct Win32API objects and make calls to these functions 
(this is all explained below!).  

require 'Win32API'

# GetPrivateProfileString instance
getvalue = Win32API.new('kernel32', 'GetPrivateProfileString', 

%w(P P P P L P), 'L');

# lstrlenA instance
strlen = Win32API.new('kernel32', 'lstrlenA', %w(P), 'L');

retstr = ' ' * (255 + 1)
getvalue.Call('database', 'login', '', retstr, 255, 
'C:/test.ini')

length = strlen.Call(retstr)
puts retstr[0..length - 1]

→  dbuser

As  you  can  see,  you  need  to  first  include  the  Win32API  module.   Then,  create 
instances of the Win32API class for each function you are going to call.  In this case, 
we  created  two  instances:  getvalue which  holds  a  reference  to 

The System Beneath...   79



GetPrivateProfileString and strlen which holds a reference to lstrlenA (both of 
which are labeled with comments).  The first parameter for the constructor is the API 
module to look in (e.g. GetPrivateProfileString lives in kernel32), and the second 
parameter is the function name that you wish to call.  The third parameter is an array 
of  parameter  types  that  the  function  takes;  for  example,  in  the  above  function 
declarations, we saw that lstrlenA takes a single constant string pointer (LPCSTR).  The 
parameter type can be specified as one of three types: P for string pointers, N and L for 
numbers,  I  for  integers,  and  V  for  void.   So  in  our  example, 
GetPrivateProfileString takes 5 string pointers and one long number parameter. 
The fourth parameter is  the return type (e.g. we specified L for long number since 
DWORD,  the type  specified  in  the  function  definition,  is  simply  a  typedef  for  long). 
Using INI files is great for legacy systems, but even Microsoft knows that keeping all 
your important data in the Registry is where it's at nowadays!

The Registry

The  Win32 module  provides  you  with  a  very  friendly  interface  to  operate  on  the 
Windows  registry.   Is'nt  that  exciting?   Now  you  can  stick  tons  of  essential 
information in there (such as license keys), have it overwritten, deleted, and generally 
molested by a virus, or even better, lost in a system restore because of said virus (I'm 
allowed  to  be  bitter)!   Even  so,  it's  a  dandy  place  to  store  general  configuration 
information for your application if used properly.

To  operate  on  the  registry,  you  need  to  first  call  open  on  the 
Win32::Registry class and give it a registry path to open followed by a block.  Think 
of this in the same way that you can open a normal file and have it  close after the 
ensuing block is finished.

require 'win32/registry'

Win32::Registry::HKEY_LOCAL_MACHINE.open('SOFTWARE\Microsoft\Wi
ndows NT\CurrentVersion\') do |reg|
  # Do your dirty work here!
end

Let's just look at opening the registry up right now, and we'll look at what you can do 
when it's  open in just  a  little  bit.   The above block  will  open up the registry  path 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\. If you 
are unsure about what this means, just look it up on Google, but basically what we've 
done is open up the registry, look inside at the software area for the local machine, 
open  up  the  CurrentVersion "folder"  inside  the  Windows NT "folder"  inside  the 
Microsoft "folder " (I say "folder" because they're not real "folders" in the sense that 
they are navigable on the hard drive; they are phantom folders, mere ghosts, floating 
in the never ending ether that is the registry).  If you get an error when running this, 
that probably means you're on Windows 98 or something like that; if that's true, then 
take off the NT on Windows.  If you got an error, and you are on Linux, please put this 
book down and call your nearest tech support center.  Now that we've got the registry 
opened up and ready to do something, let's grab some values and use them.

80   The System Beneath...



Reading  Reading values in from the registry can be done a couple of ways; generally, 
you simply provide the key name and the value is returned.

value = reg['ProductName']
value = reg['PathName', Win32::Registry::REG_SZ]
type, value = reg.read('BuildLab')

The first  call  above is  the most basic (and probably most practical  in most cases); 
values from the registry can be accessed much like they are accessed from a hash. 
Simply enclose the registry key name (in this case "ProductName") in brackets.  The 
next call will return the value, but will throw an error if the value returned does not 
match the type given as the second value (e.g., if the value for PathName were a DWORD 
in the registry, when you requested a REG_SZ it would have thrown a TypeError).  The 
value of this type parameter can only be a certain number of constants,  which are 
directly related to key types in the registry.  The table below lists these constants for 
your reference.

REGISTRY TYPE CONSTANTS

REG_NONE 
No specific type.

REG_DWORD_
LITTLE_ENDIAN

REG_DWORD_
BIG_ENDIAN 

A 32-bit number in 
little- or big- endian 
format (Windows is 
designed to run on 
little-endian 
platforms).

REG_SZ A null-terminated 
string.

REG_LINK Reserved for system 
use. 

REG_EXPAND_SZ A null-terminated 
string with some 
expandable expression 
like an environment 
variable.

REG_MULTI_SZ A sequence of null-
terminated strings, 
terminated by an 
empty, null-terminated 
string. 

REG_BINARY Binary data in any 
form.

REG_RESOURCE_LIST 
*

Nested arrays that 
store a resource list 
used by a hardware 
device driver or one of 
the physical devices it 
controls. 

REG_DWORD A 32-bit number. REG_RESOURCE_
REQUIREMENTS_LIST 
*

A complex data type 
for hardware 
configuration.

REG_FULL_
RESOURCE_
DESCRIPTOR *

Nested arrays of binary 
data that store a 
resource list used by a 
physical hardware 
device. 

REG_QWORD 

REG_QWORD_
LITTLE_ENDIAN 

A 64-bit number.

* Keys of this type are not editable, but can be read.

The third and final call in the example uses the read method; the advantage to calling 
the value this way is that it gives you the type of the key.  This is useful if  you are 

The System Beneath...   81



iterating over a set of keys and you need to perform specific operations on keys that are 
DWORD keys but not REG_SZ keys.  

Enumerating   You also have the option to enumerate values and subkeys (or sub 
"folders"), and in turn walk over the entire collection of values or a series of subkeys 
keys doing operations, storing or changing values, etc.  You can use the each_value or 
each_key method to enumerate values or keys, respectively.

    reg.each_value { |name, type, data| puts name + " = " + data }
    reg.each_key { |key, wtime| puts key + " :: " + wtime }

The each_value method will iterate over each value in the current key and return its 
value, type, and name.  The above code should output something like "ValueName = 
MyValue"  for each value in the current key (e.g., if use with the previous code to open 
up  the  CurrentVersion key  in  the  Windows NT key,  you  should  see  something 
"BuildLab = 2600.xpsp_sp2_rtm.040803-2158" for the first result).

Writing  Writing values to the registry is very similar to reading them.  The methods 
and their parameters are laid out very similarly.

    reg['RevisionNumber'] = '1337'
    reg['Name', Win32::Registry::REG_MULTI_SZ] = 'Mr.\0Neighborly\0\0'
    reg.write('MyPath', Win32::Registry::REG_EXPAND_SZ, '%PATH%')

The  first  call  shown  above  will  simply  write  the  value  2600 to  the  value 
RevisionNumber;  notice  that  much  like  when  reading  values,  you  can  make  the 
registry act like a hash.  The next call allows you to write a value with a specified type; 
like its read counterpart, it will throw a TypeError if it's the wrong type.  The last call is 
very similar to the read method demonstrated above; the first parameter is the value 
name you wish to set, the second parameter is the type, and the third is the value to 
assign to it.

Deleting  Deleting keys and values is  as simple as calling a method; just hope you 
don't blow away something important on accident, because there's no undoing it!

    reg.delete_value('MyVersion')
    reg.delete_key('FavoriteCheese')
    reg.delete_key('Ex-Wives', true)

The first method,  delete_value, will delete the value which you specify as the first 
parameter.   The second method shown,  delete_key,  will  delete the key which you 
specify, and if the second, optional boolean parameter is provided, it will delete the key 
recursively (or not if you provide false).

OLE Automation

OLE  Automation  (well,  officially  just  "automation"  but  the  OLE  term  has  sort  of 
stuck) is a nifty little mechanism that Windows and many Windows applications offer 
that  allows  you  to  automate  their  operation.   For  example,  Excel  exposes  an 
automation  interface  which  allows  you  to  launch,  create  new  documents,  edit 
documents,  and so on.  These interfaces are built  with scripting in mind, so often 

82   The System Beneath...



applications will provide a built-in way to tap into these interfaces (i.e. Visual Basic for 
Applications), but you can get to these interfaces with other clients also (e.g. C++ with 
COM, or, in our case, Ruby).

Automation Basics  Ruby's OLE automation interface is very, very simple compared 
to  most  other  languages.   As  an  example,  let's  pop  open  Internet  Explorer  and 
navigate to the web page for this book.

require 'win32ole'

myie=WIN32OLE.new('InternetExplorer.Application')
myie.visible=true
myie.navigate("http://www.humblelittlerubybook.com")
myie.left = 0
myie['top'] = 0

As you can, the code is very simple.  First you need to import the  win32ole library 
using  require.   Next,  create  a  new  WIN32OLE instance,  feeding  in  the  application 
interface  you  want  to  talk  to  (in  this  case  it's  Internet  Explorer,  so 
InternetExplorer.Application).  Note that parameter may or may not always be 
Whatever.Application, but it usually is; you may need to consult the application's 
documentation to find out exactly what it is if you are having problems.  After that, you 
simply  call  methods  on  the  interface  (these  should  be  outlined  in  the  automation 
interface's  documentation).  In our case,  we make the IE window visible,  tell  it  to 
navigate to our web page, and move the window to the upper left corner of the screen 
(i.e. set the left and top properties to 0).  Note that properties can be set using either 
attribute notation (i.e.,  myie.left) or hash notation (i.e.,  myie['top']); since both 
forms do the same thing, it's really a matter of preference as to which one you should 
use.

Automation Events  In addition to causing things to happen in an application, the 
Win32OLE class can also be used to be notified of what's going on in an application. 
This is done through an event sink mechanism that is exposed by the application and 
then consumed by your Ruby application.

require 'win32ole'

# Handler methods
def stop_msg_loop
  puts "Application closed."
  throw :appclosed
end

def handler(event, *args)
  puts "Event fired! : #{event}"
end

# Main code
ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = TRUE
ie.gohome
sink = WIN32OLE_EVENT.new(ie, 'DWebBrowserEvents')

sink.on_event {|*args| handler(*args)}
sink.on_event("Quit") {|*args| stop_msg_loop}

catch(:appclosed) {
  loop {

The System Beneath...   83



    WIN32OLE_EVENT.message_loop
  }
}

To subscribe to events, you need to follow the general procedure for consuming an 
OLE interface: import the win32ole library, create a new WIN32OLE instance, and call 
methods  and/or  attributes.   The  first  new  part  of  this  code  is  the  creation  of  a 
WIN32OLE_EVENT instance; the constructor for this class is given a WIN32OLE instance 
and the name of an event sink exposed by this interface (if the event sink doesn't exist, 
an error is thrown).  You can then hook into events using the on_event method, which 
is given a block as a parameter; this block is then in turn given the event's arguments. 
You can use on_event in one of two ways.  The first is to give it a general handler, as in 
the first call to on_event; this handler becomes a sort of catch all for any events that 
don't  have  explicit  handlers.   You  can  also  give  events  explicit  handlers,  like  the 
second call gives the the "Quit" event.  Note that right now there is no way to easily 
detach from an event, so our little "hack" to use catch to break out of the message loop 
seems to the be the easiest way to do it.

Windows Management Instrumentation  The win32ole library also allows you to 
use  the  Windows  Management  Instrumentation  (WMI)  since  it's  simply  a  COM 
interface.  WMI can be used for a number of administrative and management tasks, 
such as service management, process management, event watching, log auditing, and 
so on, on both local and remote machines.  For example, to get a list of the services on 
the local machine along with their descriptions and status, you would do something 
like the following.

require 'win32ole'

mywmi = WIN32OLE.connect("winmgmts:\\\\.")

mywmi.InstancesOf("Win32_Service").each do |s|
  puts s.Caption + " : " + s.State
  puts s.Description
  puts
end

The  connect method does basically the same thing as the  new method,  except the 
connect method hooks into an existing instance of an OLE server whereas the  new 
method  creates  a  new  instance  (i.e.,  WMI  is  already  running  as  a  server  on  your 
machine  unless  you  disabled  it,  but  for  something  like  Word  or  Outlook  a  new, 
application-specific instance is needed).  In this case, we used the InstancesOf method 
that  is  exposed  by  WMI  to  get  an  array  of  the  instances  of  the  WMI  class 
Win32_Service, which is simply a representation of an entry in the service list for your 
machine.   In  our  block  we  could  have  called  methods  such  as  StopService or 
StartService to control it  or if there were processes we could use  Create to start 
them, but for the sake of brevity (and the sanity of your machine), I opted to simply 
display the name, description, and status.  When you run this script, you should see 
output for each service that looks something like this:

Task Scheduler : Running

Enables a user to configure and schedule automated tasks on 
this computer. If this service is stopped, these tasks will not 

84   The System Beneath...



be run at their scheduled times. If this service is disabled, 
any services that explicitly depend on it will fail to start.

You can also get lists of processes, computers, users, groups, and so on, but that is out 
of  the  scope  of  this  book.   Look  at  the  MSDN  documentation  for  WMI  linked  in 
Appendix A for more on what information is exposed by WMI.

The  win32ole library  also  allows  you  to  subscribe  to  WMI events;  WMI 
events  span the whole  gamut  of  system-wide  events  such  as  file  creation,  process 
creation, service actions,  log entries,  and so on.  As an example, we'll  watch for a 
process that we create to end.

require 'win32ole'

locator = WIN32OLE.new("WbemScripting.SWbemLocator.1")
service = locator.ConnectServer("./","","","")

proc = service.Get "Win32_Process"
rc = proc.Create('notepad.exe', nil, nil, nil)
processid = WIN32OLE::ARGV[3]
puts "New process id: #{processid}"

query = "select * from __InstanceDeletionEvent within 1 where 
targetinstance isa 'WIN32_Process' and targetinstance.Handle = 
#{processid}"

event = service.ExecNotificationQuery(query)
event.nextevent

puts "Process terminated."

Because of the way the WMI operates, you can't use the built-in event mechanism in 
the win32ole library, but it's fairly simple to get this working nonetheless.  First, create 
a new instance of the WIN32OLE class using the new method and point it at the server 
Wbemscripting.SWbemLocator.  This OLE server is the basic equivalent of connecting 
like we did before (winmgts://), but using this in conjunction with the subsequent 
call to ConnectServer allows you to do two things.  

First, you can connect to remote computers, meaning you could use this code 
or  similar  snippets  to  do  various  tasks  on  a  number  of  computers  you  may  be 
managing.  Second, you can provide login credentials as the last two parameters to 
this method.  None are needed on the local machine usually (unless you are not an 
administrator or privileged account), but if this were a remote machine call you would 
probably need a user name as the third parameter and the password as the fourth. 
Next we use the WMI method to get a reference to the Win32_Process class and create 
an instance of it, passing in "notepad.exe" as the process to start.  Doing so creates a 
new  Notepad  instance  (i.e.,  you  should  see  Notepad  pop  up  on  your  screen)  and 
returns some data about it, which we use to get the process ID.  

Next, we use WQL (WMI Query Language) to tell WMI that we're going to 
be watching for processes to be destroyed that have the process handle (ID) of the 
process  that  we  created;  the  WQL  statement  is  executed  using  the 
ExecNotificationQuery method that is exposed by WMI.  This method returns an 
event notifier object, which we can call the nexteven method on; this method tells the 
current thread to pause until the next event is fired, so if you were to use this in an 

The System Beneath...   85



actual application that should continue running, this should be forked into its own 
thread.  Close Notepad and you should see the output "Process terminated";  this 
means that the next event has fired (i.e., the process has been deleted) and the current 
thread has been given control  once again.   This is  a fairly simplified example, but 
hopefully  it  should  give  you  the  basic  concepts  to  translate  more  complicated 
examples from VBScript, C++, or C# into Ruby and make use of them.

This Chapter   

You learned about Ruby's system level interaction.  You learned...

• about Ruby's filesystem interaction capabilities.

• how to start threads and fork processes.

• how Ruby can interact with Microsoft Windows on a number of levels.

86   The System Beneath...



5
Looking Beyond Home

In  this  day  and  age,  the  rage  with  all  the  kids  seems  to  be  those  "networked" 
computers.   Well,  whatever  that  means,  those  young'uns  don't  need  to  look  any 
further than Ruby for their network fix, whether it be getting cracked out on HTTP or 
hopped up on databases.  One of my favorite  thrills  in high school was hitting an 
Ethernet line and then listening to Link Void's  "Darkfiber  Line to the Room"  and 
watching "The Wizard of Oz" at the same time.  Fun times.  

NETWORKING AND THE WEB

Ruby's  networking  abilities  have  been  favorably  compared  to  languages  such  as 
Python and Perl;  while  Ruby doesn't  have huge libraries such as  CPAN or tightly 
integrated  suites  like  Twisted  (yet),  it  does  present  a  nice  suite  of  networking 
capabilities built right in.

Socket Programming

Ruby offers a number of socket 
types that you can use to connect 
to  different  transport  and 
network  protocols.   Both 
connection- and connectionless-
oriented  transports  are  offered, 
along  with  classes  that  offers 
client  and  server  support.   All 
sockets hail from the Genesis of 
all  socket classes:  BasicSocket. 
The Socket class provides you with a very C-ish interface to sockets; it is much more 
complex  and  a  generally  pain  in  the  bum  compared  to  the  other  classes  such  as 
IPSocket, UDPSocket, or TCPSocket.

Looking Beyond Home   87



The rest of this  section (i.e.,  the part dealing with actually networking an 
application)  will  concentrate  on  the  TCPSocket and  TCPServer class,  since  these 
classes will be the most common classes you will use and are easier than using the 
same functionality using the Socket class.  There is a lot of information available on 
using  the other  classes,  so  if  you  need  to  use  something  like  a  UDP  socket,  then 
consult one of the links in Appendix A or use your favorite search engine to find what 
you need.

Server  The TCPServer class offers a simple way to get socket server functionality up 
and  going  in  your  application  with  minimal  fuss  when  dealing  with  accepting 
connections and the like.  There's not much background other than what's already 
been discussed with regard to sockets in general, so let's get right into some code and 
construct  the de facto standard example socket server  example program: the echo 
server.

require "socket"

myserver = TCPserver.new('localhost', 0)
sockaddr = myserver.addr

puts "Echo server running on #{sockaddr.join(':')}"

while true
  Thread.start(myserver.accept) do |sock|
    puts("#{sock} connected at #{Time.now}")

    while sock.gets
sock.write($_)
puts "User entered: #{$_}"

    end

    puts("#{sock} disconnected at #{Time.now}")
    s.close
  end
end

Let's take this apart.  First, you must include the socket module, which will give you 
access to TCPServer and all its related modules and classes.  Next, you must create a 
TCPServer instance using the either the new method or its synonym, the open method. 
The first parameter is the interface to bind to; if this is left blank, then Ruby binds to 
all available interfaces on the host.  The second parameter is the port number; if this is 
0 like in the example, then the system automatically selects an available port.  Then 
upon entering the loop, we tell the application to wait until a new socket is connected 
(which  fires  myserver.accept);  when  the  socket  connects,  a  new  Thread object  is 
created and the enclosed block is executed.  I use a  Thread here simply because this 
setup allows you to connect more than one client to this particular server instance. 
You could do it "blocking" using a while loop or some such, but it's generally better 
practice to do it  like this.   The  Thread's  block has logic to output a message upon 
connect and disconnect of a host and output user data entry on the console and back to 
the socket.  Upon running this, you should have a simple socket server that will echo 
back any input given to it.

Echo server running on AF_INET:3160:localhost:127.0.0.1

88   Looking Beyond Home



When the server starts, you should see a little bit of information about it, including the 
port number (which is highlighted above).  Now if you open up a telnet client and 
telnet to localhost on the given port number, you should be able to enter some text and 
have it echoed back to you.

myhost> telnet localhost 3160

some more text!!
some more text!!
the pandas are livid!!
the pandas are livid!!
Pancakes are a far better source of Omega-3.
Pancakes are a far better source of Omega-3.

After you close the telnet window, flip over to the Ruby console that your application 
has been running in and look at the output.

Echo server running on AF_INET:3160:localhost:127.0.0.1
#<TCPSocket:0x27ebefc> connected at Wed Sep 13 19:44:28 Eastern 
Daylight Time 2006
User entered: some more text!!
User entered: pandthe pandas are livid!!
User entered: Pancakes are a far better source of Omega-3.
#<TCPSocket:0x27ebefc> disconnected at Sat Sep 13 19:45:48 
Eastern Daylight Time 2006

When the application started, you were given a nice little startup message, which is 
followed by messages indicating the various events going on in the application.  Now 
let's take a look at TCP client services.  

Client  TCP client services are offered by the TCPSocket class; this class allows you to 
make a TCP connection to various services, such as finger, ftp, your own service on a 
random port, or even a telnet server.  Let's connect to the BOFH Excuse telnet server 
on blinkenlights.nl  as  an example;  this  way,  when your  boss asks you  why you're 
reading  this  book  instead  or  working,  you  can  provide  him  or  her  with  a  proper 
excuse.

require "socket"

print("Connecting...")
clientsock = TCPsocket.open("towel.blinkenlights.nl", 666)
print(" done\n")

puts("Connected from #{clientsock.addr[2]} 
to #{clientsock.peeraddr[2]}")

while (excuse = clientsock.gets)
  print(excuse)
end

clientsock.close

First, you need to import the socket library, of course.  Next, you open a TCPSocket 
much like you open a file stream.  The first parameter is the hostname or network 
address to connect to, and the second is the port to connect on.  Now that you have a 
socket, you can treat it just like a stream that you would get from a file or something 
similar,  hence why you can use  gets to  get  data from  it.   You can also  use  read, 
readline,  write,  writeline,  and  any  other  stream  reading/writing  command. 

Looking Beyond Home   89



Sockets also have their own methods, such as recv to receive data from the socket and 
send to send data over the socket, but it is not necessary to use these.  It's simply a 
matter or preference and style.  When you run this code, you should get output similar 
to the following.

Connecting... done
Connected from host.domain.com to towel.blinkenlights.nl

=== The BOFH Excuse Server ===
Your excuse is: It's not plugged in.

First, you're given a few messages about the connection that is made, followed by the 
output returned from the server.  We've basically telnetted (is that a verb?) into the 
server and received the output, which means that we could point a TCPSocket at a 
TCPServer and have them talk to each other.  Let's create a client for our echo server.

require "socket"

print("Connecting...")
clientsock = TCPsocket.open("localhost", 1390)
print(" done\n")

while (gets())
  clientsock.write($_)
  puts(clientsock.gets)
end

clientsock.close

Notice this  code  is  very similar  to our previous code,  with the exception of  a  few 
things.  First, we changed the hostname and port number (which you will need to get 
from the echo server beforehand or take as a command line parameter to your Ruby 
script).   Secondly,  the  main  loop  now  operates  on  user  input  rather  than  socket 
output, and in this loop, take user input and write it to the socket.  The socket's output 
is then written to the console.  When you run this and enter some data, you should get 
something like the following.

Connecting... done
localhost to localhost
Chicken livers and potbellies!
Chicken livers and potbellies!
My bowler is dusty from my superfluous emissions.
My bowler is dusty from my superfluous emissions.

Now, if you flip over to the server's console window, you should see something very 
similar to the following.

Echo server running on AF_INET:1390:localhost:127.0.0.1
#<TCPSocket:0x27ebefc> connected at Sat Sep 16 17:34:07 Eastern 
Daylight Time 2006
User entered: Chicken livers and potbellies!
User entered: My bowler is dusty from my superfluous emissions.
#<TCPSocket:0x27ebefc> disconnected at Sat Sep 16 17:41:51 
Eastern Daylight Time 2006

Congratulations!   You've  successfully  written  a  fully  networked  Ruby  application. 
This  example  is  frivalous  and  useless  of  course,  but  it  should  illustrate  the  basic 

90   Looking Beyond Home



concept enough to build off of.  Before you know it, you'll be porting Apache to Ruby 
or telling your boss that you don't need no stinkin' web browser if you've got Ruby.

HTTP Networking

Speaking of the web, HTTP networking is also a very important component of today's 
network  programming  landscape.   HTTP,  or  HyperText  Transfer  Protocol,  is  the 
standard for Internet communication these days.  I'm still not sure why the world ever 
got away from ALOHA, but then again I'm not sure why 640K of memory isn't enough 
for everyone nowadays either.  In any case, Ruby provides a robust library of HTTP 
functionality built right in to the standard library.

Server  HTTP serving with Ruby is incredibly easy.  You could build a server based off 
of TCPServer,  meticulously implementing each part  of  the HTTP protocol,  solving 
concurrency and blocking issues as they came up, and figure out a way to reliably send 
binary data.  Then again, you could just use WEBrick, the full-Ruby web server that is 
included in the standard library.  

require 'webrick'
include WEBrick

myserver = HTTPServer.new(:Port => 8080,
                   :DocumentRoot => Dir::pwd + "/temp")
myserver.start

Using the  above  four  line  snippet,  you  now  have  a  fully  operational  HTTP  server 
running on the port your specify that will serve HTML documents out of the path you 
specify as the DocumentRoot option (e.g., in the example it's the folder the script is 
launched from and "temp" like "/home/yourname/temp").  To start the server, simply 
give create a new instance and call the start method.  The parameters shown for the 
constructor are the most commonly used, but there are a lot you can assign.  If you're 
really  interested  in  finding  out  more,  you  can  see  all  of  them  in  the  WEBrick 
documentation at http://www.ruby-doc.org/stdlib/libdoc/webrick/rdoc/index.html.  

Back to the example, if you have an HTML file named index.html dropped 
into the path you specified, you should be able to navigate to http://localhost:8080 
and see it.

Looking Beyond Home   91

http://www.ruby-doc.org/stdlib/libdoc/webrick/rdoc/index.html


If you don't have an index.html file, it will show you an index of the files that are in 
there; you can then request one of those either by clicking the link or navigating to it 
directly.  Now that you have a working HTTP server, let's take a look at Ruby's HTTP 
client facilities.

Client  Ruby's HTTP client library is the Net::HTTP class.  This class provides a simple 
interface to making HTTP requests to local and remote servers for any type of file. 
Possible uses include periodically downloading something like logs or new feeds or if 
downloading a large number of files without making a request for each one through a 
web browser or something like wget.  As an example, let's say you wanted to download 
Digg's  RSS feed  so  you  could  parse  it  into  a  Ruby  on  Rails  website  or  your  own 
homegrown RSS reader; you could do so by making a request with the  Net::HTTP 
class.

require 'net/http'

Net::HTTP.get_print 'www.digg.com', '/rss/index.xml'

First, you need to make include the net/http library using require.  In this instance, I 
used  the  get_print method  to  print  out  the  file  to  the  console.,  which  takes  a 
hostname and a file to retrieve.  This is the best way to do do this if you want to get the 
same file from a number of servers (i.e., you could leave the file as a constant string 
and have the hostname be a variable) or a lot of files from the same host (i.e., you 
could leave the hostname as a constant string and the file variable),  but if you are 
generally fetching files  from  different servers  and of  different filenames,  there is  a 
more intuitive way to do so.

92   Looking Beyond Home

Figure 13: Scotty O'Laddie's Fun Site!  Pretty much the best website in the world.



require 'net/http'
require 'uri'

Net::HTTP.get_print URI.parse('http://www.ruby-lang.org') 

The above snippet will grab the Ruby Language home page's source code and print it 
on the console.  If you notice, rather than feeding the get_print method two separate 
parameters (i.e., the hostname and the filename), I used the URI.parse method from 
the  uri  library;  this  method  allows  you  to  take  a  normal  URL  (e.g., 
http://www.bn.com/, http://www.ruby-lang.org/,  http://rubyonrails.org/index.php, 
and so on) and pars e it for use with any of the Net::HTTP methods.  I show this early 
in this section because it is the easiest way to give URLs to these methods; speaking of 
those methods, let's take a look at some of the other methods in this library.

So far I've been using the get_print method to get and print the contents of 
a request.  This method is great if that's all you're doing, but what if you need to get the 
contents and store in a variable?  Or what if you want to manipulate the HTML some 
way?  That's where the get method comes in; this method will execute a request and 
then return the results for you to have your way with.

require 'net/http'
require 'uri'

src = Net::HTTP.get(URI.parse('http://www.cnn.com/')) 
puts src

As you can see, the same basic process is followed as before with get_print, except 
this time the results are first stored in the src variable.  

The Net::HTTP library also allows you to post form data to a URL.  You can 
do this over GET by appending the form data to the end of the URL (e.g., http://your-
host.com/index.php?underpants=secured&sandpaper=finegrain&lotion=yes), but a 
little more effort is required to make a POST request.  A POST request are the sorts of 
form posts that don't append anything to the URL, but rather submit the form data as 
part of the HTTP request.  You can use the post_form method to make this kind of 
request with Net::HTTP.

require 'net/http'
require 'uri'

postit = 
Net::HTTP.post_form(URI.parse('http://zip4.usps.com/zip4/zcl_3_
results.jsp'), {'zip5'=>'37998'})

puts postit.body

The above snippet will use the USPS ZIP code lookup to find out what city a ZIP code 
is from; using the post_form method, you can post a form by providing the form keys 
and values in a hash as the second parameter (i.e., in this case, zip5 was a text field on 
the normal page which was for the ZIP code you wish to look up).  The results are 
returned just like a normal GET request.

The final portion of this library I would like to cover is the Net::HTTP.Proxy 
class, which allows you to connect through a proxy.  Instances of HTTP.Proxy have 

Looking Beyond Home   93



the same methods as a normal Net::HTTP instances, so you can use it almost the same 
way.

require 'net/http'
require 'uri'

src = Net::HTTP::Proxy('myproxyhost', 8080, 'username', 
'password').get(URI.parse('http://www.cnn.com/')) 

puts src

When creating an instance of the HTTP::Proxy class, you must give it a proxy address 
and port; the last two parameters for a username and password are optional (but, of 
course, required if your proxy requires authentication).  Now any request you make 
using that instance will go through the provided proxy.  

I  didn't  cover  everything  about  Net::HTTP here.   Think  of  this  as  a  mere 
brushing  of  the  surface,  uncovering  a  mere  snippet  of  what  can  be  seen  at 
http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/index.html.   I  encourage  you 
to go there and look over the documentation, as we have only uncovered "te wolechla" 
of the the whole enchillada.

Other Network Services

Though I've covered the two most popular protocols, that doesn't mean the little guys 
won't get any love.  Since when is it that only the popular kids matter?  Well, probably 
since about 1944, but that's beside the point.  I'm going to cover the nerds and geeks 
of the network protocol community because I want to (that and the Commission for 
Equal  Treatment  of  Network  Protocols  and Their  Ugly  Cousins That  Suck  at  File 
Transfers might yell at me if I don't).

FTP  The File Transfer Protocol (FTP) is a fairly popular method for transferring and 
storing files, particularly in open source circles.  As such, being able to grab these files 
(or  upload  them,  whatever  thc  case  may  be)  with  a  Ruby  script  may  prove  to  be 
incredibly handy.  Fortunately, Ruby provides a built-in library to handle all of your 
FTP needs.

require 'net/ftp'

ftp = Net::FTP.new('ftp.gnu.org')
ftp.login('anonymous', 'me@mrneigborly.com')

ftp.chdir('gnu/readline/')
files = ftp.list('r*')
puts files

ftp.getbinaryfile('readline-5.1.tar.gz', 'rline.tar.gz')

ftp.close

The  above  snippet  will  login  to  the  GNU  FTP  server  and  download  the  readline 
library.  Ruby's FTP library, just like every other library, must first be included using 
require.   Next,  you  need  to  create  a  new  Net::FTP instance,  providing  the 
constructor with a hostname to connect to.  The login method will then log you into 
the FTP server; if you are logging in anonymously (i.e., like in the example) it's not 

94   Looking Beyond Home

http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/index.html


completely necessary to provide a username and password.  If left blank, Ruby will 
substitute  anonymous in  as  the  username  and  anonymous@yourhostname as  the 
password.  Next, you need to navigate to the proper directory; here, I used the chdir 
method to change directories to the gnu/readline/ folder and the list method to get 
a list of the files in that directory, which is then printed to the console.  Once you're 
where you want to be, you can use gettextfile or getbinaryfile (as I have here) to 
get files or puttextfile or putbinaryfile to upload local files to the server (if you're 
allowed to).  The get methods require two parameters: the remote file to get, the local 
filename to copy it to.  The put methods require two parameters also: the local file to 
copy, and the remote filename to copy to.  If you'd like to see more examples, go to 
http://www.ruby-doc.org/stdlib/libdoc/net/ftp/rdoc/index.html to view this library's 
documentation.

SMTP  The SMTP Protocol, or Simple Mail Transfer Protocol...er...Protocol, is the de 
facto standard for  sending e-mail.   Thanks to  this  protocol  and it's  usually crappy 
implementation,  you  and  I  get  thousands of  spam e-mails  every  day.   Thanks Jon 
Postel,  Eric Allman, Dave Crocker, Ned Freed, Randall Gellens, John Klensin, and 
Keith Moore for inflating my inbox (and thanks Wikipedia for telling me who worked 
on SMTP)!  So, anyhow, using SMTP in Ruby is actually quite painless.

require 'net/smtp'

message = <<MESSAGE
From: Your Name <you@you.com>
To: That Guy <him@him.com>
Subject: My fine hat is misplaced
Date: Sat, 15 Sep 2006 16:26:43 +0900
Message-Id: <thisisunique@you.com>

Where is my fedora?
MESSAGE

smtp = Net::SMTP.start('me.com', 25)
smtp.send_message msgstr,'you@you.com','him@him.com', 'you.com'
smtp.finish

First, tell Ruby to require the net/smtp library (I know it seems redundant, but you'd 
be surprised how many times even I forget this).  Next, I constructed a message in a 
string.   Message  construction  would  probably  be  handled  differently  in  a  "real" 
application, but this method works for this example.  Next, create a new  Net::SMTP 
instance by calling the start method, giving the constructor a hostname and port for 
your SMTP server.  Next, call the  send_message method, giving it the message, the 
sender's  e-mail  address,  and  the recipient's  e-mail  address,  and HELO domain as 
parameters.  The HELO domain is used by some mail servers and spam filters to make 
sure that the e-mail is legitimate.  Finally, call the  finish method to end the SMTP 
session.   If  your SMTP server  requires  authentication,  you need to  make the start 
method call like the following.

Net::SMTP.start('me.com', 25, 'you.com', 'you', 'mypw', :plain)

The three additional parameters handle your authentication.  The first of these is the 
username  and  password  combination;  the  last  parameter  indicates  which 
authentication scheme will be used.  In this case, I used the evil and much maligned 

Looking Beyond Home   95

http://www.ruby-doc.org/stdlib/libdoc/net/ftp/rdoc/index.html


plain scheme, but there are the login scheme and the slightly more secure cram_md5 
scheme which you can use.   Check  with your server's  administrator  to make your 
server supports these methods before trying to use them as some crappier mail servers 
don't support them.

POP  The POP protocol,  or  Post  Office Protocol...protocol,  is  (obviously)  used to 
retrieve e-mail.  It has largely fallen out of favor in recent years since more people have 
discovered IMAP (which is covered in the next section) but is still in widespread use. 
Ruby's POP library is an easy to use interface to a POP server, and quite honestly one 
of the more natural POP interfaces I've used.  Other interfaces can be compared to a 
McDonald's worker that speaks Engrish.  You know what you want them to do, but 
either they don't understand or they do it in a way that may make sense but only to 
someone who is either stupid or simply strange.  Fortunately, Ruby's POP interface is 
natural and readable.

require 'net/pop'

pop = Net::POP3.new('mymailserver.com')
pop.start('myaccount', 'salacious')

if pop.mails.empty?
   puts 'No mail to grab.'
else
  pop.each_mail do |msg|
    puts msg.pop
    # msg.delete
  end
end

pop.finish

This  code  snippet  will  open a  new  connection  to  a  POP  server  and  log  you  in by 
creating a Net::POP3 instance and calling the start method with login credentials as 
parameters.  Next, it checks whether or not the mailbox is empty by using the empty? 
method on the mails attribute of the Net::POP3 instance.  If they mailbox is empty a 
message is displayed indicating its emptiness, but otherwise the each_mail method is 
used to iterate the mail messages and print them out.  The commented out code would 
delete the message, but I didn't want to put destructive code in something that you're 
likely to copy and paste without regards to content.  Since the mails attribute is simply 
an array of mail messages, you could also use the each method to iterate the message, 
but it's probably a better idea to use the each_mail method since it is specialized (not 
that it makes a difference, but it's probable that the other one will become deprecated 
eventually).  

I didn't cover all the features in the section; one reason is that I don't have a 
server that supports them all (i.e., APOP).  Another reason is that they're not common 
enough to warrant anymore documentation than you can find on the documentation 
page at http://www.ruby-doc.org/stdlib/libdoc/net/pop/rdoc/.  Let's move along to a 
superior mail retrieval method: IMAP.

IMAP  IMAP (Internet Message Access Protocol) is the e-mail flavor du jour currently 
since it's a little more efficient than POP.  It allows you to have many logical mailboxes 
rather than a single inbox, multiple client access to one mailbox, and much more.  Put 

96   Looking Beyond Home

http://www.ruby-doc.org/stdlib/libdoc/net/pop/rdoc/


simply, it's a natural evolution of POP.  Ruby's IMAP  interface is surprisingly robust; 
it  gives you a natural interface to all  of IMAP's commands.  Let's take a look at an 
example from the Ruby documentation that will grab all mail messages and print out 
their sender and subject.

require 'net/imap'

imap = Net::IMAP.new('mail.example.com')
imap.authenticate('LOGIN', 'joe_user', 'joes_password')

imap.examine('INBOX')

imap.search(["RECENT"]).each do |msg_id|
  envelope = imap.fetch(msg_id,"ENVELOPE")[0].attr["ENVELOPE"]
  puts "#{envelope.from[0].name}: \t#{envelope.subject}"
end

This example works much like the POP example in the first few lines: create a new 
instance parametrized with the hostname and call a method to authenticate).  The two 
authentication  schemes  supported  by  IMAP  are  LOGIN (used  here)  and  CRAM-MD5. 
After  these  lines  though,  IMAP's  architecture  really  starts  showing.   The  examine 
method gives you read-only access to a mailbox or folder (the select method, which 
is used the same way, allows editing access); you can then use the search method to 
grab a list of mails to operate on.  You can use the fetch method to get a mail object, 
which you can get information from (as in the example) or use methods like copy or 
store.   To  get  more  information,  check  out  the  IMAP  library's  documentation  at 
http://www.ruby-doc.org/stdlib/libdoc/net/imap/rdoc/index.html.

Web Services

Web Services are growing in popuarity these days, and as such I thought it was pretty 
important that I at least mention them.  I'm only going to cover a very basic client side 
example, as this could honestly be a book on its own if  anyone wanted to write it. 
There are a few links in Appendix  A  that talk  about  using Ruby and web services 
together if you're interested; otherwise let us march on towards our web service laden 
Promised Land.  We have yet to cross the Red Sea, but, brothers and sisters, it is in 
sight!

XML-RPC  Consuming an XML-RPC (XML Remote Procedure Call) web service in 
Ruby  is  as  simple  as  fetching  a  web  page,  except  instead  of  giving  you  a  rather 
unusable raw return value, Ruby gives your beautifully and transparently converted 
values that you can use right away.  Let's look at a slightly edited example from the 
documentation.

require 'xmlrpc/client'

server = XMLRPC::Client.new2("http://xmlrpc-
c.sourceforge.net/api/sample.php")

result = server.call("sample.sumAndDifference", 5, 3)

puts "#{result['difference']} and #{result['sum']}"

→  2 and 8

Looking Beyond Home   97

http://www.ruby-doc.org/stdlib/libdoc/net/imap/rdoc/index.html


First, you need to include the library and create a new instance using the new2 method 
(or  new with a lot of parameters or  new3 with a hash of every parameter needed; it's 
sort of up to you).  Then use the call method to make an XML-RPC call to the server; 
the call  method takes the remote  method  as  the first  parameter  and  the method's 
parameters as the remaining parameters.  The results are then returned to you as a 
usable hash (i.e., result[difference]) rather than a random, annoying, unparsed XML 
string.  If you are interested at looking at the documentation for the XML-RPC client, 
look at  http://www.ruby-doc.org/stdlib/libdoc/xmlrpc/rdoc/index.html; if you want 
to implement an XML-RPC server, look in Appendix A for links to some information.

SOAP  SOAP (which used to stand for Simple Object Access Protocol, but now it 
apparently  stands  for  SOAP)  is  the  supposed  successor  to  XML-RPC.   It  was 
supposed to be a way to share objects over a network, but somewhere along the way 
everything went awry, the FCC got involved, and SOAP doesn't do what it was meant 
to do.  In any event, it's a fairly common and powerful way to do web services.  Here is 
an example  from the documentation for  soap4r,  the standard way  to do  SOAP  in 
Ruby,  which  will  translate  from  English  to  German  using  a  SOAP  interface  for 
Babelfish.

text = 'Here I lie in a sweater poorly knit.'
lang = 'en_de'

require 'soap/rpc/driver'

server = 'http://services.xmethods.net/perl/soaplite.cgi'
InterfaceNS = 'urn:xmethodsBabelFish'
wireDumpDev = nil

drv = SOAP::RPC::Driver.new(server, InterfaceNS)
drv.wiredump_dev = wireDumpDev
drv.add_method_with_soapaction('BabelFish', InterfaceNS + 
"#BabelFish", 'translationmode', 'sourcedata')

puts drv.BabelFish(lang, text)

→  hier liege ich in einer Strickjacke stricke schlecht

This looks complex, but it's mostly just setting up the SOAP parameters.  First, I put in 
some seed data to work with, which is basically a sentence that will be translated from 
English to German.  Next, you can see that I included the library and then put some 
SOAP parameters into variables.  The first value, server, is the location of the service 
to connect to;  the second, InterfaceNS, is the namespace that the method you wish 
to call is located in.  The last one is the "dump" handler for errors, that if set to  nil 
becomes the standard error channel.  Next, a new SOAP::RPC::Driver is created that 
points to the service and namespace specified earlier and is told to dump to stderr 
(standard error).   The next little bit of code demonstrates an interesting feature of 
soap4r, which is probably what sets it apart from most other SOAP wrappers.  The 
add_method_with_soapaction uses Ruby's dynamic nature to add a method to the 
Driver object.  This means that rather than marshalling and calling and doing a lot of 
other random stuff, you can now call the method on the Driver object like any other 
method (which we do at the end of this snippet).

Once again, I'm not covering nearly all of this library.  There are so many 
features in there that I couldn't dream of trying to do it justice in one little section;if 

98   Looking Beyond Home

http://www.ruby-doc.org/stdlib/libdoc/xmlrpc/rdoc/index.html


you're really curious and want to find out more, you can check out the soap4r website 
at http://dev.ctor.org/  soap4r  /   or the other links Appendix A for more information.

IT'S LIKE DISTRIBUTED OR SOMETHING...

In  today's  world  of  enterprise  software,  loosely  coupled  systems,  and  kosher  beef 
franks  made  by  Jews,  distributed  computing  is  becoming  increasingly  more 
important.  Perhaps you need to expose an interface to the world for usage of your 
resources; maybe you need to distribute heavy computing across a grid of computers; 
maybe you want to calculate something in a number of environments with minimal 
effort.   The  DRb (Distributed  Ruby)  package  provides  a  simple  way  to  handle 
distributed computing in Ruby.

Every DRb application has two components: a server and clients.  The server 
will start a TCP server, which will expose objects, accept connections, and respond to 
actions requested over those connections.  Clients will establish connections to a DRb 
server, bind to objects, and send messages to those objects similar to messages that 
are sent to local objects when calling methods and attributes.  Let's build an example 
to get a feel for how this works; let's say you needed to keep track of your log sizes on a 
remote server and wanted to keep that figure on your desktop for easy monitoring.

Server  Setting up a DRb server is simple if you have the class you want to expose 
already constructed.  In this case, I'm exposing a rather trivial class that simply takes 
one value as a parameter (the log file to watch) returns one value (the size of the log 
file).

class FSWatcherService

  def initialize(filename)
    @file = filename
  end

Looking Beyond Home   99

Figure 14: A typical DRb setup: server and client.

file:///G:/Personnel Folders/Jeremy/Morgue/Book/BodyMatter.odt/ http://dev.ctor.org/soap4r/
file:///G:/Personnel Folders/Jeremy/Morgue/Book/BodyMatter.odt/ http://dev.ctor.org/soap4r/
file:///G:/Personnel Folders/Jeremy/Morgue/Book/BodyMatter.odt/ http://dev.ctor.org/soap4r/


  def getspace
    return File.size(@file)
  end

end

Now that you have a class to work with, you need to wrap it in a DRb server.  This is 
done by simply calling the start_service method from the drb module and giving it a 
few parameters.

require 'drb/drb'
require 'thread'

class SizeService

  def initialize(filename)
    @file = filename
  end

  def getspace
    return File.size(@file)
  end

end

DRb.start_service("druby://:9876", SizeService.new('cats.log'))
puts DRb.uri

DRb.thread.join

First you need to include both the DRb module (drb/drb) and the thread module so 
you can join the DRb server's thread into the main one.  Next you see the class we 
made earlier.  Then you need to call the start_service method from the DRb class; 
this will start a DRb server on the specified URI and expose the indicated object.  The 
DRb URI is then printed to the console (for reference and for your benefit when trying 
to connect to it).  The DRb server's thread is then joined to the main thread, and the 
server idles until connected to.

Client  DRb makes constructing a client dirt simple.  The basic process is that you call 
start_service, bind to the remote object, and then use it just like a remote object.  

require 'drb/drb'

Drb.start_service
remoteobj = DRbObject.new(nil, 'druby://domo:9876')
puts "Log file usage is #{remoteobj.getspace()} bytes."

As  you  can  see,  you  simply  create  a  new  DRbObject and  give  it  a  DRb  URI  as  a 
parameter, and voila!  You've got a remote object you can use just like a local object; in 
this example, I called the  getspace() method on the remote object and printed its 
value to the console.

I didn't cover every nook and cranny of DRb here (and I didn't intend to; it's a 
robust package); it also offers ways to make your application thread safe (so that when 
you have a lot of clients connecting and disconnecting that your data stays kosher for 
all of them) and a host of security measures.  Check the links in Appendix A to find out 
about all that stuff and more.

100   Looking Beyond Home



DATA MY BASE, PLEASE!

Database driven applications are incredibly common nowadays; everyone's got one. 
Your wife, your mom, your son, the creepy guy at work with a nasty mustache and 
halitosis.  If you don't get your butt in gear and get one, your boss is going to fire you 
for being the only square who isn't rolling on dubs, RDBMS style.

DBI  Ruby's  DBI  package,  much  like  the  Perl  package,  is  a  database  vendor-
independent database connection suite.  Its robust support for database features and 
vendors is nearly unparalelled.  As an illustration, here is a table of supported database 
vendors and connection types.

ADO (requires Win32) DB2 Frontbase InterBase

mSQL

OCI8

MySQL

PostgreSQL (Pg)

ODBC

SQLite

Oracle

SQLRelay

It  supports more connection types,  such as a  Proxy  through DRb, and even more 
vendors through interfaces like ADO and ODBC.  Let's take a look at how to connect 
to one of these databases.

The basic process for making DBI work is to connect to the server, providing 
a  host  and  credentials,  execute  or  prepare  and  execute  SQL  statements,  fetch  the 
results,  and,  when  you're  done,  disconnect  from  the  server.   Let's  build  a  quick 
example that will show off most of the functionality of DBI; let's say you needed to 
keep a database of all of the specimens that are in your exotic slug collection.

require 'dbi'

DBI.connect('DBI:Mysql:mydb', 'myuser', 'mypass') do | dbh |

  dbh.do('CREATE TABLE slugs(name, age);')

  sql = "INSERT INTO slugs (name, age) VALUES (?, ?)"

  dbh.prepare(sql) do |sth|
    1.upto(43) { |i| sth.execute("Slug #{i}", "#{i*3}") }
  end

  dbh.select_all('SELECT * FROM slugs;') do |row|
    puts "Hello, #{row[0]!"
  end

  sth = dbh.prepare("SELECT * FROM slugs WHERE name='Slug 1';")
  sth.execute

  while row = sth.fetch do
    puts row
  end

end

To start up DBI, call  connect, feeding it the database driver, database, and host to 
use, and open a block.  This block is provided the database handle as a parameter 

Looking Beyond Home   101



102   Looking Beyond Home



(dbh), which it can then operate on.  First, we create a table to work with using the do 
method; the do method immediately executes a SQL statement.  Next, we build a SQL 
statement and prepare it  using the obviously named  prepare statement.   This will 
allow us to execute the same SQL statement over and over again quickly, easily, and 
efficiently  using  the  execute method (as  I've done  here  when inserting  the data); 
another  upside  is  that  you  can  have  it  use  placeholders  as  I've  done  here  using 
question marks.  This lets you substitute values in each time the statement is executed; 
for example, here I substitute in the slug's name and age, which changes each time the 
statement is called.  Next, you can see the select_all method being used, which will 
return  every  row  from  a  SELECT statement  and  feed  it  to  a  block;  there  is  also  a 
select_one method for those times when you really just need one row.  You can also 
prepare, execute, and fetch results if  that's your flavor; that method is shown here 
using the  prepare and  execute combination with a  while loop to fetch the results. 
Finally, when the block exits, the client disconnects.  If you opt to not use the block 
form of this code, you will need to call disconnect to disconnect from the server.

ActiveRecord  If  you have any experience with Ruby on Rails at  all,  you've surely 
heard of its great  ORM (Object Relational Mapping) package ActiveRecord, but did 
you know you can use ActiveRecord without Rails?  It's really quite simple once you 
see it in action.  You first need to make sure you have it installed typing the following 
in a Ruby file and running it.

require 'rubygems'
  require 'activerecord'

If you get an error, then make sure you have installed RubyGems.  If you don't, install 
it.  If you do have RubyGems installed and lack ActiveRecord, then enter gem install 
activerecord  in a console to install ActiveRecord.

To get ActiveRecord going in your application, you essentially you import the 
gems library and ActiveRecord, construct a configuration that would normally live in 
a  Rails  database  configuration  file  (i.e.,  config/database.yml),  define  your 
ActiveRecord classes, then call methods on them.  For example, let's create a database 
in your favorite database server (e.g., mySQL, PostgreSQL, and so on) and a table 
named people that has three fields: name, job, and location.  Insert a few rows and let's 
map that into an ActiveRecord application.

require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(
  :adapter  => "mysql",
  :host => "localhost",
  :database =>  "test",
  :username =>  "root",
  :password =>  ""
)

class Person < ActiveRecord::Base
end

mypeople = Person.find(:all)
puts "Total length: #{mypeople.length}"

Looking Beyond Home   103



→  Total length: 14
mypeople.each do |personobj|
  puts "Hello #{personobj.name}, #{personobj.job}."
end

→  Hello Imogen, child psychiatrist and superhero.

As  you  can  see,  rather  than  having  a  pre-constructed  configuration,  the 
establish_connection method is fed a longer set of parameters.  Then, a class that 
inherits from  ActiveRecord::Base is created that is the singular form of the table 
name we made earlier, hence Person for the table people (this is part of the magic of 
ActiveRecord);  this  maps  the  table  to  a  class  that  you  can  instantiate  and  use  to 
manipulate  rows  in  the  database  (check  out  the  ActiveRecord  documentation  at 
http://api.rubyonrails.org/ for  more  information  on  what  you  can  do  with 
ActiveRecord objects).  

This Chapter   

You learned about Ruby's networking faculties.  You learned...

• about Ruby's basic networking capabilities with TCPSocket/TCPServer.

• how to use HTTP networking with Ruby.

• consume web services with Ruby.

• about DRb and Ruby's distributed computing capabilities.

• how to connect to a database with Ruby.

104   Looking Beyond Home

http://api.rubyonrails.org/


6
It's a Library!

As you've seen, Ruby provides a number of  built-in classes for you to access; it has a 
huge  library  of  functions  to  cover  anything  from  simple  text  input  and  output  to 
networking to multimedia (not counting the boat load of third party libraries floating 
about).   We've  taken  a  look  at  some  of  the  more  "targeted"  classes  (i.e.,  win32, 
networking, and so on), but I want to take some time to devote a really quick overview 
to a few classes that are more miscellaneous in nature.

STRING MANIPULATION

Ruby's string support easily rivals that of Perl  and other "power" languages.  As a 
matter of fact, I've heard that when Larry Wall goes home at night he secretly moon 
lights as a Ruby programmer.  Don't tell anyone I told you.  There are two ways to 
manipulate strings: instance methods on string objects and regular expressions.

Instance Methods

Ruby  strings  are,  of  course,  objects,  and  as  such,  offer  methods  to  manipulate 
themselves in a variety of ways.  First we will look at the simplest manipulation of a 
string: the splice.  The first way I'd like to show splicing is the splice operator; this 
operator is used just like the array operator (i.e. it uses the  object[index] form to 
reference and set the value of elements) with a few little string specific extras.  For 
example:

the_alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
puts the_alphabet[0..2]

→  ABC

puts the_alphabet["HIJ"]

→  HIJ

puts the_alphabet[1,2]

→  BC

It's a Library!   105



the_alphabet[1] = "!"
puts the_alphabet

→  A!CDEFGHIJKLMNOPQRSTUVWXYZ

As an alternative, you can use the slice method to grab elements in a similar manner:

puts the_alphabet.slice(0, 3)

→  ABC

puts the_alphabet.slice(0..5)

→  ABCDEF

Once you have your string data sliced and diced just the way you want it, you 
can manipulate it in a number of ways; these methods include ways to change case, 
edit certain content, or generally finagle with the string.  Here are some examples:

a_str = "I likE To MesS with STRINGS!"

a_str.downcase

→  i like to mess with strings!

a_str.upcase

→  I LIKE TO MESS WITH STRINGS!

a_str.swapcase

→  i LIKe tO mESs WITH strings!

a_str.capitalize

→  I like to mess with strings!

a_str.capitalize!
puts a_str

→  I like to mess with strings!

a_str.squeeze

→  I like to mes with strings!

The names of these methods should make their usage obvious, with the exception of 
squeeze which will remove sets of the same character and replace them with a single 
instance of that character (i.e. "mess" is now "mes"); each of these methods also offers 
an "in place" version as demonstrated by capitalize!.  

The insert method allows you to insert a string at a given index; be careful 
because this method will  modify the string in place (I'm not sure why this method 
lacks a !, but it does):

into = "12345"
into.insert(2, "LETTERS!")
puts into

→  12LETTERS!345

On the other hand, you can use the delete method to remove characters or a range of 
characters from a string:

gone = "got gone fool!"
gone.delete("o", "r-v")
puts gone

→  g gne fl!

106   It's a Library!



Placing a hyphen between two letters will  tell  Ruby to create an inclusive (i.e. also 
include the lower and upper limit characters, such as r and v in the example) range of 
characters.   You  can  use  this  technique  with  a  number  of  methods,  but  it  is 
exceptionally useful with delete.

Removing the last character from a string can be really annoying and much 
longer that it should be in some languages (I'm looking right at you PHP); fortunately, 
like any good language that has strings, Ruby offers chomp and chop:

eat_me = "A lot of letters\n"
eat_me.chomp

→  A lot of letters

eat_me.chop

→  A lot of letter

eat_me.chomp("ter")

→  A lot of let

The  chomp method will remove the record separator (stored in the global object  $/) 
from the end of a string; if $/ hasn't been changed from the default, this means it will 
remove  \n,  \r\n,  and  \r (essentially any sort of newline character).   You can also 
specify what to chomp by passing it in as a parameter as in the last example.  The chop 
method will simply chop off the last character regardless of what it is (note: it will treat 
\r\n as one character).  

If you simply need to remove the whitespace from the beginning and/or end 
of a string, then use one of the strip methods: lstrip,  rstrip, or simply strip.  For 
example:

stripper = "    La di da!    \t"
puts "[" + stripper.lstrip + "]"

→ [La di da!    ] 

puts "[" + stripper.rstrip + "]"

→ [     La di da!]

puts "[" + stripper.strip + "]"

→ [La di da!]

If it isn't obvious from the examples, the lstrip and rstrip methods strip off any sort 
of whitespace (i.e. spaces, tabs, newlines, etc.) from a string on the left or right side, 
respectively.  The strip method strips whitespace from both sides.

The  split method  will  probably  be  one  of  your  most  often  used  string 
methods; it breaks a string into substrings based on a specified delimiter.  That's a bit 
of a mouth full, so let me show you an example:

breakable = "break,it,down,fool!"
breakable.split(",")

→ ["break", "it", "down", "fool!"]

The split method breaks a string into pieces; these pieces are formed by breaking the 
string at a delimiter, removing that delimiter, and placing the remaining pieces into an 

It's a Library!   107



array.  This allows you to then use an iterating loop to go over the collection and do 
various operations on the data within.

But what if you need to do an operation that isn't allowed on a string?  For 
example, you want to do some arithmetic on some numbers you read in from a text 
file, but text from files is always read in as strings.  Ruby offers the  to_f and  to_i 
methods to allow just that:

numerical_string = "1234"

numerical_string + 6

→ ! TypeError

numerical_string.to_f + 6.7

→ 1240.7

It's important to remember that all  data read from sockets, files,  and users will  be 
strings; if you plan on doing any sort of math with this data, you must run it through 
one of these methods first.

Regular Expressions

I  mentioned regular expressions in passing earlier so the appearance of the syntax 
wouldn't confuse you if you were looking at Ruby examples elsewhere; now I'd like to 
take some time to discuss what regular expressions are and how incredibly useful they 
can be.

Firstly,  let me say that I am not going to give you a grand tour of regular 
expressions, nor will I bore you with a biography of his third cousin, Samuel del Fuega 
IV.  I will, however, provide some very rudimentary examples whereby I can show the 
usage of these methods and, for the special price of nothing at all, I am providing an 
appendix with URLs of pages to visit if you'd like to find out more about the dark craft 
of regular expressions (it's in Appendix A).  Aren't you excited?  Let's proceed.

A regular expression (sometimes called a regexp or regex) is  a string that 
describes or matches a set of other strings, according to a set of syntax rules. Their 
uses  range from  simple searches to full  string transformation involving searching, 
replacing,  and shifting of data.   They're a  delightful  addition to any programming 
language, a useful tool for string manipulation, and make a delectable topping for any 
dessert.

Regular expressions have a rich syntax which allows you to do a number of 
things, but for the sake of brevity and sanity of scope, I will use very simple regular 
expressions.  You will need to go and read an introduction to regular expressions to 
fully and easily understand what is going on, but perhaps you can gather what's going 
on without it.

Let's begin by looking at the simplest use of regular expressions: matching. 
You can search within a string using regular expressions easily;  let's say you were 
wanting to see if a string was a substring of another string.  You could do this:

108   It's a Library!



matchmaker = "I'm a cowboy, baby!"

matchmaker =~ /cow/

→ 6

matchmaker.match("cow")

→ #<MatchData:0x61d3120>

Using the =~ will return the index of the first match of the pattern, but using the match 
method of  a  string,  you can get  a  MatchData object  which  gives  you  a number of 
options for accessing the matches.  For example:

my_message = "Hello there!"
my_message.match(/(..)(..)/).captures

→  ["He", "ll"]

Using the captures method, you can grab the matches for each expression; the to_a 
method will offer you similar output but will also tag on the fully matched string.  That 
was sort of a silly example, so let's look at a more plausible example.  Say you wanted 
to grab the text between two delimiters; here is one way to do it:

html_element = "<html>"
my_element_text = html_element.match("(<)(.*)(>)").captures
puts my_element_text[1]

→  html

If  you're the curious type,  you can look  in the Ruby API Documentation for  more 
information on the MatchData class.

If you'd like to kick out the middle man and simply get an array of matches 
back from the method, you can use the scan method:

my_message = "Hello there!"
my_message.scan(/(..)(..)/)

→  [["He", "ll"], ["o ", "th"], ["er", "e!"]]

Other than the difference in return type between the two methods,  match and  scan 
also differ in "greediness."  A "greedy" regular expression or method will match every 
occurrence of a pattern rather than just matching one.  The scan method is greedy; it 
will match every occurrence of a pattern in a string (note: you can make match greedy 
using a certain kind of regular expression).

Another  usage  of  regular  expressions  is  substitution;  substitution  using 
regular expressions is very flexible if you use the right combination of potent regular 
expressions.  Again, because I do not discuss advanced regular expressions, the true 
usefulness  of  this  technique  won't  really  register,  but  I  hope  that  you  will  take  a 
serious look at regular expressions and use them to your advantage.  To substitute 
using a regular expression, you use the sub or gsub method of a string instance:

go_away = "My name is Freak Nasty!"

go_away.sub("y", "o")

→  Mo name is Freak Nasty!

It's a Library!   109



go_away.gsub("y", "o")

→  Mo name is Freak Nasto!
go_away.sub("Freak Nasty", "Fred Jones")

→  My name is Fred Jones!

The sub method will only replace the first match for the pattern, but the gsub method 
is greedy (I'm sure the g didn't give it away) and will replace every match.  Again, the 
greediness of each method can be gaged by the usage of certain regular expression 
constructs.  The more powerful regular expressions you learn, the more you can do 
with them; remember to check out Appendix A for more information.

DATE/TIME

Have you ever found yourself in the deli, browsing the ham and other delectable meat 
products, and then realized that you left your calendar in Bermuda?  That happened to 
me just last millenium, and let me tell you, I felt vulnerable.  No calendar means, no 
days.  No days means no nights, which means I could die.  Fortunately, Ruby provided 
me with a fairly useful date and time library to use until I could get my half brother in 
law's pet monkey's trainer's dog to mail my calendar back yesterday.

There are three date and time classes in the Ruby library:  Date,  Time, and 
DateTime.  I heard a rumor that  Date and Time hooked it up around version 1.4 and 
got DateTime about 9 months later, but then again, this source also told me that Rails 
was a gentlemen's club for Ruby programmers.  

Dates

The first class I'd like to cover is Date; this class simply exposes an interface to store, 
manipulate, and compare dates in a Ruby application.

mydate = Date.new(1999, 6, 4) →  1999-06-04
mydatejd = Date.jd(2451334) →  1999-06-04
mydateord = Date.ordinal(1999, 155) →  1999-06-04
mydatecom = Date.commercial(1999, 22, 5) →  1999-06-04
Date.jd_to_civil(2451334) →  [1999,6,4]
Date.jd_to_civil(2451334) →  [1999,6,4]
mydatep = Date.parse("1999-06-04") →  1999-06-04

As you can see, creating a Date instance is rather simple in its literal form; simply call 
new (or the civil method; the two are synonyms), providing a date as the following 
parameters.  This method uses the date form we usually see, but  Date also supports 
other date forms.  The  jd method allows you to create a  Date instance based on a 
Julian day number; the  ordinal method creates a  Date object based on  a provided 
Ordinal  date,  or  a  date  created  providing  the  year  and  day  number;  commercial 
creates  a  Date object  from  the  provided  Commercial  date,  or  a  date  created  by 
providing the year, week number, and day number.  Methods are provided to convert 
between these date forms also (e.g.,  commercial_to_jd,  jd_to_civil,  and so on). 

110   It's a Library!



These all work well enough, but notice the last example using the parse method; this 
allows you to parse strings into  Date objects.  I find this is the most intuitive way of 
creating Date objects second to using the new method.

You can also test  input with various class methods, and, once you have a 
Date object, get all sorts of information from it with a few instance methods.  

Date.valid_jd?(3829) →  3829
Date.valid_civil?(1999, 13, 43) →  nil
mydate.mon  →  6
mydate.yday  →  155
mydate.day  →  4

As  you  can  see,  you  can  test  its  validity  in  a  certain  format,  and,  using  instance 
methods,  convert  between  the  different  formats.   You  can  also  get  various 
components of the date, such as the year day (yday), month (mon), and so on.  You can 
also compare and manipulate dates using standard operators.

date1 = Date.new(1985, 3, 18)
date2 = Date.new(1985, 5, 5)

date1 < date2 →  true
date1 == date2 →  false
date3 = date1

date1 == date3 →  true
date1 << 3 →  1984-12-18
date2 >> 5 →  1985-10-05

As you can see, comparing dates is just like comparing a standard numerical value or 
something similar; a date that comes before another date is judged to be "less than"; a 
date that comes after is judged to be "greater than."  You can also use the >> and << 
operator to add or subtract months (see the last two examples).  Now that you have a 
familiarity with the Date class, let's move on to the Time class.

Times

The Time class is very similar in function to the Date class, except it concentrates on 
times and timestamps rather than simply dates.  Much like the  Date class, various 
constructors are available.

rightnow = Time.new  
→  Sun Sep 10 21:36:15 Eastern Daylight Time 2006

Time.at(934934932)

→  Tue Aug 17 20:08:52 Eastern Daylight Time 1999
Time.local(2000,"jan",1,20,15,1)

→  Sat Jan 01 20:15:01 Eastern Standard Time 2000
Time.utc(2006, 05, 21, 5, 13)

→  Sun May 21 05:13:00 UTC 2006

It's a Library!   111



Time.parse("Tue Jun 13 14:15:01 Eastern Standard Time 2005")

→  Tue Jun 13 14:15:01 Eastern Daylight Time 2006

As you can see, you can create a new Time object that holds the values for the current 
time and timezone by simply calling new (or optionally, now; they do the same thing). 
If  you  require  a  certain time,  you  can use  at,  which operates  on epoch time (i.e., 
seconds from January 1st, 1970); you can also use the utc and gm methods to create 
times based on those timeszones and the provided parameters (or the local method 
to use the current local timezone).  You can, just like Date, use the parse method to 
parse a timestamp into a Time object.

The  Time class  also  offers  a  few  instance  methods  that  allow  you  to  get 
portions of the object's value, convert the value, and output the value in other formats.

rightnow = Time.new

→  Sun Sep 10 21:42:30 Eastern Daylight Time 2006
rightnow.hour

→  21
rightnow.mon

→  9
rightnow.day

→  10
rightnow.to_i

→  1158543750
rightnow.to_s

→  Sun Sep 17 21:42:30 Eastern Daylight Time 2006

As you can see, the methods for Time are very similar to Date with regards to getting 
portions of the value, and also notice that you can convert  the  Time objec to other 
classes, such as a Fixnum.

Let's  concentrate  on  one  instance  method  for  a  moment;  the  strftime 
method is a very useful method that allows you output a timestamp in the format of 
your choice by providing you with a formatting interface.  This interface acts very, very 
similarly to  printf in  C++; it  uses delimiters like  %f  to indicate the placement of 
values in the output string.  Here are a few examples:

rightnow = Time.now

rightnow.strftime("%m/%d/%Y")

→ 09/10/2006
rightnow.strftime("%I:%M%p")

→ 09:13PM
rightnow.strftime("The %dth of %B in '%y")

→ The 17th of September in '06
rightnow.strftime("%x")

→ 09/17/06

112   It's a Library!



The strftime method is one of the most complex in the Time module; check out the 
Time class's  documentation  at  http://www.ruby-doc.org/core/classes/Time.html if 
you'd like more information about strftime and what you can do with it.

Dates and Times

 The DateTime class combines the previous two classes into one convenient yet slightly 
less efficient class.  The DateTime class is really just a subclass of Date with some time 
functionality slapped in there for good measure; it's a fine endeavour to be sure but not 
really worth the time if you ask me.  Even so, it has some interesting functionality.

rightnow = DateTime.now

→ 2006-09-10T21:56:45-0400
maytime = DateTime.civil(2006, 5, 6)

→ 2003-05-06T00:00:00Z
parsed = DateTime.parse("2006-07-03T11:53:02-0400")

→ 2006-07-03T11:53:02-0400
parsed.hour → 11
parsed.day → 3
parsed.year → 2006

As you can see it works very similarly to the  Date class; you can construct using the 
various date formats or parse a date/time string.  Also notice that like the  Date and 
Time classes, you can query various parts of the value inside the object.  

You may be scratching your head right now asking which one you should use 
and when.  Personally, I would never use  DateTime, but rather  Time or  Date if at all 
possible.  Sometimes this is unavoidable, but be aware that using just Date or Time in 
lieu  of  DateTime yieldds  approximately  800%  better  performance.   Sometimes 
performance, like size and Poland, does matter.

HASHING AND CRYPTOGRAPHY

Sometimes you simply don't want people to be able to see your data transparently; I 
mean,  maybe you've got  this  rash that  you  don't  want  people  to know  about.   Or 
maybe there's something you just want to forget, so you hash it and never worry about 
it again.  Forunately for me...er, I mean you...Ruby comes stock with a neat little hash 
library and has a gem that can be installed to offer cryptography.

Hashing

Think of hashing as one-way encryption; hashes are encrypted strings that are derived 
from a stream of data.  Typical uses include password verification (i.e., you store the 
hash in the database, then test user input by hashing it and seeing if the hashes match) 
and file verification (i.e., two of the same file should have the same hash).  Ruby offers 
the two most common hash types, MD5 and SHA-1, as built-in modules.

It's a Library!   113

http://www.ruby-doc.org/core/classes/Time.html


MD5  MD5  is  the  most  widely  used  cryptographic  hash  function  around;  it  was 
invented in 1994 as a successor to MD4 by Ronald Rivest, a professor at MIT.  It's 
fallen out of mainline use as a secure hash function because of vulnerabilities that 
have  been  found,  but  it's  still  useful  for  matching  values  and such.   Ruby's  MD5 
functionality isn't quite as easy as something like PHP (i.e., md5('your data');), but 
it's still usable and friendly enough.

require 'digest/md5'
md5 = Digest::MD5.digest('I have a fine vest!')

→ sXm(1r\371\353\027\367\235u!\266\001\262
md5 = Digest::MD5.hexdigest('I have a fine vest!')

→ 73586d283172f9eb17f79d7521b601b2

The MD5 class offers two methods for getting a hash digest; the first is simply the 
digest method.  This returns a pretty unsafe byte stream of the hash digest; I  say 
unsafe because you could not embed this in something like an XML or HTML (or 
some databases) and expect it to behave properly.  A better choice for these situations 
would be the hexdigest method (second example); this runs the results of the hash 
through a base64 hex algorithm, which is fancy talk for a method that makes it more 
friendly.

SHA-1  The SHA-1 hash algorithm is far more secure than MD5; though still not the 
most secure (i.e., exploits reportedly exist for it), it should work for most situations.  It 
is widely used as a hashing algorithm in many secure contexts, such as in packages 
like TLS, SSL, PGP, SSH, and IPSec.  Ruby offers the same interface to the SHA-1 
algorithm as it does the MD5 algorithm.

require 'digest/sha1'
sha1 = Digest::SHA1.digest('I have a fine vest!')

→ \225J{{\233\025\236\273\344\003X\233\33 [...]
sha1 = Digest::SHA1.hexdigest('I have a fine vest!')

→ 954a7b7b9b159ebbe403589bdaa8f981003a2fbc

As you can see, it functions exactly the same as the MD5 class, except you get a stronger 
hash.  Now let's get away from hashes and take a look at cryptography.

Cryptography

Ruby  does  not  have  cryptographic  capabilities  built-in,  so  you  have  to  resort  to 
installing a gem.  I guess technically this isn't a Ruby built-in library, but it's important 
enough  to  warrant  a  short  mention.   The  third-party  crypt  library  available  at 
http://crypt.rubyforge.org is a pure Ruby cryptography library.  You can install it by 
issuing the gem install crypt command to install its gem; look in Appendix A for a link 
on how to install and setup RubyGems if your Ruby installation doesn't have them 
already.  

The crypt library offers four encryption algorithms: Blowfish, GOST, IDEA, 
and Rijndael.  Fortunately, the interface for each on is relatively the same.  Let's take a 
look at an example using the Blowfish algorithm from their documentation.

114   It's a Library!

http://crypt.rubyforge.org/


require 'crypt/blowfish' 
blowfish = Crypt::Blowfish.new("A key up to 56 bytes long")
plainBlock = "ABCD1234"
encryptedBlock = blowfish.encrypt_block(plainBlock)

→ \267Z\347\331~\344\211\250
decryptedBlock = blowfish.decrypt_block(encryptedBlock) 

→ ABCD1234

This is one of the easiest cryptography libraries out there; simply feed it a key in the 
constructor,  call  the  encrypt_block method  to  encrypt  the  data,  and  then 
decrypt_block to decrypt it.  Since the developers went to great lengths to keep the 
API  basically  the  same  for  all  the  algorithms,  you  can  simply  subsitute  the  other 
algorithm names in place of Blowfish to get them working (i.e., put Rijndael in place 
of Blowfish and it should work just the same).  There are other restrictions on key 
length and such, along with other methods and functions you can use.  Check out 
http://crypt.rubyforge.org/ to learn more.

UNIT TESTING

Test  Driven Development is  the new  hotness,  especially  in  the Ruby development 
world.  I'm sure the Ruby core team took this into account when they built  a  unit 
testing framework into the standard library of the language: Test::Unit.  Ruby's 
unit testing framework is excellent (and has been made better and/or replaced and 
improved by other frameworks) yet very simple to use.

The  basic  premise  of  testing  is  to  make  sure  that  your  code  is  behaving 
correctly  in  as  many  contexts  as  you  can  simulate  programmatically.   This  might 
sound stupid, but trust me: you'll catch twice as many bugs using a unit test as you will  
by just playing around with your application because you know how it is supposed to 
operate  but  the  computer  doesn't.   It  has  no  "developer's  discrimination"  when it 
comes to using your application.  You know what I'm talking about; no one wants 
their application to break, so they unconsciously tip-toe around what might become a 
bug.  I do it all the time.  That's why I use testing.

Ruby's  unit  testing framework provides a  simple interface for  performing 
tests.   Let's  say  you wanted to test  your class that stores  MAC addresses  for your 
locally networked client applications.  

class MacAddr
  def to_s
    return @mac_parts.join(":")
  end

  def initialize(mac)
    if mac.length < 17
      fail "MAC is too short; make sure colons are in place"
    end

    @mac_parts = mac.split(':')
  end

  def [](index)
    return @mac_parts[index]

It's a Library!   115

http://crypt.rubyforge.org/


  end
end

This simple class has three methods: to_s,  intitialize, and an index method ([]). 
The constructor,  initialize,  takes a  string with a  MAC address in it.   If  it  is  the 
wrong length, an exception is thrown; otherwise it's broken up on the colons (part of 
the standard MAC notation) and placed in an instance variable.  The  to_s method 
joins this array together with colons and returns it.  The index method ([]) will return 
the requested index from the MAC address array (@mac_parts).  Now that we have 
something to work with, let's build some tests.

Tests with Test::Unit center around inheriting from the Test::Unit::TestCase 
for each test case.  So, if we were to create a test case for our MAC address class, we 
would do something like the following.

require 'test/unit'

class TestMac < Test::Unit::TestCase
end

Simple enough, right?  Now that you have a test case class, you need to fill in tests. 
Tests could be written as a bunch of ugly if statements, but unit testing frameworks do 
their best to get away from that by providing you with  assertions (i.e., wrappers for 
those conditional statements that hook into the framework in a meaningful way).  The 
first  type  of  assertion  we'll  look  at  are  the  equality  tests.   There  are  two  equality 
assertions:  assert_equal and assert_not_equal.   Let's create a couple of those tests 
now in the same file we created the class.

require 'test/unit'

class TestMac < Test::Unit::TestCase
  def test_tos
    assert_equal("FF:FF:FF:FF:FF:FF",
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
    assert_not_equal("FF:00:FF:00:FF:FF", 
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
  end
end

We've  basically  created  two  tests.   The first  makes sure  that  if  we  give  it  a  MAC 
address, it  will  return it  properly when using to_s.  The second one does the same 
thing, but in an inverse conditional, we feed it a different value to make sure they're 
not equal.  Upon running the tests, we should hopefully see success.

Loaded suite unit_test
Started
.
Finished in 0.0 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

And  we  do.   Excellent.   Now  let's  take  a  look  at  another  type  of  assertion:  nil 
assertions.   These  assertions,  assert_nil  and  assert_not_nil,  do  basically  the  same 
thing  as  if  you  did  an  assert_equal  and  tested  for  nil.   Let's  create  a  test  using 
assert_not_nil.

116   It's a Library!



require 'test/unit'

class TestMac < Test::Unit::TestCase
  def test_tos
    assert_equal("FF:FF:FF:FF:FF:FF",
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
    assert_not_equal("FF:00:FF:00:FF:FF", 
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
    assert_not_nil(MacAddr.new("FF:AE:F0:06:05:33"))
  end
end

Again, upon running the tests, we should hopefully see a successful run without and 
errors or failures.

Loaded suite unit_test
Started
.
Finished in 0.0 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

And  we do.   Great!   Now, let's  look at  one  final  type of  assertion that  deals  with 
exceptions.  Ruby's testing framework allows you not only to test the return value of 
units of code, but also to test whether they raise exceptions or not.  We told our class 
to raise an exception if the MAC address isn't the right length, so let's write a test to 
test that.

require 'test/unit'

class TestMac < Test::Unit::TestCase
  def test_tos
    assert_equal("FF:FF:FF:FF:FF:FF",
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
    assert_not_equal("FF:00:FF:00:FF:FF", 
        MacAddr.new("FF:FF:FF:FF:FF:FF").to_s)
    assert_not_nil(MacAddr.new("FF:AE:F0:06:05:33"))
    assert_raise RuntimeError do
      MacAddr.new("AA:FF:AA:FF:AA:FF:AA:FF:AA")
    end
  end
end

Now, if we run these tests again, we'll hopefully see another wonderfully successful 
run.

Loaded suite unit_test
Started
F
Finished in 0.015 seconds.

  1) Failure:
test_tos(TestMac) [test21.rb:27]:
<RuntimeError> exception expected but none was thrown.

1 tests, 4 assertions, 1 failures, 0 errors

Oops!  If you look at our constructor, we merely test if the MAC address is too short.  
Let's switch that < to a != so that it catches it whether it's too short or too long and try 
these tests again.

It's a Library!   117



Loaded suite unit_test
Started
.
Finished in 0.0 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

Great!  We've built a small test suite for our class.  Of course, this is just one class in a 
whole application, and each class should have its own test suite.  As test suites grow, 
you'll  inevitably want to break them into separate files, since you wouldn't want to 
keep all 1,200 of your test cases for your breakdancing panda screen saver in one file. 
Fortunately,  Test::Unit  is  smart  enough  to  pick  up  on  numerous  test  files  being 
included into one test run.  This means you could do something like the following 
without any problems.  

require 'test/unit'
require 'pandatest'
require 'breakdancetest'
require 'breakdancingpandatest'
require 'somewhatperipheralelementstest'
require 'somewhatperipheralelementsbestfriendsunclestest'

I've just given you a basic rundown of testing; I'm providing a list of links in Appendix 
A that can take you deeper into Test Driven Development and testing with Ruby.  Also 
be  sure  to  check  out  the  Test::Unit  documentation  at  http://www.ruby-
doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html to  find  about  other 
available  assertions  (there  are  a  few  I  don't  cover  here  because  they're  not  very 
common).  

118   It's a Library!

http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html


It's a Library!   119



120   It's a Library!



  PERORATION   
I hope you've enjoyed this journey through Ruby as much as I have.

Please do check out my Rails book at http://www.rubyonrailsbook.com/ and my blog 
at http://www.mrneighborly.com/.  Feel free to drop me an e-mail or comment there 

with any questions or comments.

Enjoy your newfound avocation which will hopefully turn in an occupation for you 
rather than an exasperation over any sort of snag or complication that you may 

encounter in the course of your application of the principles in this publication.  

That rhymed a lot.  There's a reason they call me Kill Masta Neighborly.  Fo' rizzle.

Peace out,

Mr. Neighborly

It's a Library!   121

http://www.mrneighborly.com/
http://www.rubyonrailsbook.com/


122   It's a Library!



Appendix A
Links and the Like

THE RUBY LANGUAGE

Ruby Language main site http://www.ruby-lang.org/
    The main site for the Ruby language; get downloads and information here
RubyForge http://www.rubyforge.org/
    Looking for a Ruby library or application?  Chances are you can find it here.
RubyCorner http://www.rubycorner.com/
    Ruby blog aggregator; blogs are added by their owners, so there are currently 200+.
Ruby Central http://www.rubycentral.com/
    David Black's excellent Ruby organization; you can find information and links here.
PlanetRuby http://planetruby.0x42.net/
    Another Ruby blog aggregator; blogs are selected by the site owner.

DOCUMENTATION

RubyDoc http://www.rubymanual.org/
    Points to a number of Ruby documentation sources, including the Ruby API docs.
Why's Poignant Guide to Ruby http://www.poignantguide.net/ruby/
    Another Ruby book; if you found my writing too dull, perhaps this is more your flavor.
RubyManual http://www.rubymanual.org/
    PHP Manual style documentation that allows user comments.
RubyGems Installation http://rubygems.org/read/chapter/3
    Article on how to install and setup RubyGems

REGULAR EXPRESSIONS

Regular Expressions Tutorial http://www.regular-expressions.info/
    The tutorial I learned from; it's not the best (from what I hear) but it worked for me. 
Regular Expressions Library http://www.regexlib.com/
    A large library of user-submitted regexen that do anything you can think of.
Wikipedia Article http://en.wikipedia.org/wiki/Regex
    The Wikipedia article for regular expressions; as always, pretty useful information.

Links and the Like   123

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regex
http://www.regexlib.com/
http://www.regular-expressions.info/
http://rubygems.org/read/chapter/3
http://planetruby.0x42.net/
http://www.poignantguide.net/ruby/
http://planetruby.0x42.net/
http://planetruby.0x42.net/
http://www.rubycentral.com/
http://www.rubycorner.com/
http://www.rubyforge.org/
http://www.ruby-lang.org/


UNIX INFORMATION

The Filesystem          http://www.unix.org.ua/orelly/networking/puis/ch05_01.htm
    Excellent source for information on UNIX filesystems and their metadata.
Linux Documentation Project                                          http://www.tldp.org/
    The source for Linux documentation.
General Linux command list           http://www.linuxdevcenter.com/linux/cmd/
    Huge list of Linux commands; useful for those mystery commands or finding new ones.
A Beginner's Tutorial for Linux                    http://www.linux-tutorial.info/
    Very basic information about Linux.

WEB SERVICES

Ruby Web Services h  ttp://www.devx.com/enterprise/Article/28101
    Great article that discusses building web services using Ruby.
Soap4r Homepage                                  http://dev.ctor.org/soap4r/
    The official homepage of the official SOAP client for Ruby.
xmlrpc4r - XML-RPC for Ruby      http://www.fantasy-coders.de/ruby/xmlrpc4r/
    Provides an XML-RPC server in Ruby.

DISTRIBUTED RUBY

DRb Rdocs               http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
    The official documentation for DRb. 
DRb Tutorial               http://www.chadfowler.com/ruby/drb.html
    Chad Fowler's excellent DRb tutorial.
Segment7 DRb Page http://segment7.net/projects/ruby/drb/
    More DRb information from Segment7.

DATABASES

Official DBI website                     http://ruby-dbi.rubyforge.org/
    Official homepage of the Ruby DBI package
Ruby and the mySQL package        http://www.kitebird.com/articles/ruby-mysql.html
   A tutorial on using the mysql package and Ruby
ActiveRecord Docs              http://api.rubyonrails.org/classes/ActiveRecord/Base.html
   The official Ruby on Rails rdocs for ActiveRecord; go here for more info on how to use it

UNIT TESTING

ZenTest     http://rubyforge.org/projects/zentest/
    Testing, on steroids. If you get bored with Test::Unit, check this out.

124   Links and the Like

http://rubyforge.org/projects/zentest/
http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://www.kitebird.com/articles/ruby-mysql.html
http://ruby-dbi.rubyforge.org/
http://segment7.net/projects/ruby/drb/
http://www.chadfowler.com/ruby/drb.html
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://www.fantasy-coders.de/ruby/xmlrpc4r/
http://dev.ctor.org/soap4r/
http://dev.ctor.org/soap4r/
http://www.linux-tutorial.info/
http://www.linux-tutorial.info/
http://www.devx.com/enterprise/Article/28101
http://www.linux-tutorial.info/
http://www.linux-tutorial.info/
http://www.linuxdevcenter.com/linux/cmd/
http://www.tldp.org/
http://www.unix.org.ua/orelly/networking/puis/ch05_01.htm


Why and How: Ruby (and Rails) Unit Testing
     http://glu.ttono.us/articles/2005/10/30/why-and-how-ruby-and-rails-unit-testing
     An excellent article by Kevin Clark on unit testing with Ruby (and Rails). 

Links and the Like   125

http://glu.ttono.us/articles/2005/10/30/why-and-how-ruby-and-rails-unit-testing


Appendix B
High Performance Ruby

with C/C++

There is a lot of talk these days about extending Ruby with C and C++, and how those 
extensions can greatly improve Ruby's performance.  No package has done more to 
promote this than RubyInline, a port of Perl/Python/whatever else's inline C module.

Many developers question a mindset that says "Rewrite it in C" if a part of an 
application is too slow in the current language; many developers from other camps 
feel that this unnecessary step is a weakness of Ruby and that Ruby should be faster 
rather than having to use C/C++.  I don't see it that way.  I think Ruby's nature and the 
ability  for  developers  to  be  able  to  directly  write  C  code  inline  is  great.   Telling 
developers to rewrite it in C for speed isn't any different than what many language 
interpreters do.  Look at Python's interpreter; anything that needs any degree of speed 
has been rewritten in C rather than solid Python.  It's a fact of dynamic languages that 
they will occasionally need these speed boosts.

I'm not going to go into a huge spill about RubyInline or how to use it; it's too 
big of a subject.  This is one of those things that could warrant its own book if anyone 
would write it.  There are so many applications for this technology, and people are 
beginning to take notice.  I typically wouldn't write about subjects like this, since I am 
not a C/C++ master (I have experience, but I prefer to enjoy programming rather than 
abuse myself), but it's becoming an increasingly important subject.

Using RubyInline  is  much  easier  than  trying  to write  a  C  extension  from 
scratch.  The basic premise of the package is to allow developers to embed C/C++ code 
directly into the Ruby code for  their application,  which will  then be compiled and 
dynamically  executed  as  the  application  runs.   The  idea  is  that  you  profile  your 
application  using  something  like  the  Ruby  profiler  and  figure  out  where  your 
bottlenecks  are.   For  example,  Pat  Eyler  wrote  about  rewriting  parts  of  a  prime 
number calculator in C; he used Ruby profiler to figure out that a block of code that he 
was passing was causing a massive slow down.  You should then take this data and 
figure out what you could rewrite in C, and only rewrite that (there's no reason to go 

126   High Performance Rubywith C/C++



nuts  and  rewrite  a  lot  of  your  application  in  C  just  to  get  some  false  illusion  of 
perfomance at  the cost of maintainability or readability).   In most cases,  rewriting 
these little parts make your performance numbers an order of magnitude better.  It's 
really a neat concept, and incredibly helpful for adding a speed to your application.  

Now, let's take a look at how this plays out when you actually get to using it. 
Install RubyInline using the installation instructions on ZenSpider's RubyInline page 
at http://www.zenspider.com/ZSS/Products/RubyInline/, and let's take a look at an 
example from the home page.

require 'inline'

class MyTest
  inline(:C) do |builder|
    builder.include '<iostream>'
    builder.add_compile_flags '-x c++', '-lstdc++'
    builder.c '

      void hello(int i) {
        while (i-- > 0) {
          std::cout << "hello" << std::endl;
        }
      }'
  end
end

t = MyTest.new()
t.hello(3)

The above code will  print  "hello" three times.   This is,  of  course,  a  very  contrived 
example, but I put it here to first explain how RubyInline works.  As you can see, you 
simply open a block with the inline method to begin the process; the  :C parameter 
isn't required if you are using C, since that is what RubyInline is designed for.  Next, 
you can see that iostream is included using the include method; notice you can also 
add compile flags to the command line using the add_compile_flags method.  This is 
useful if there are libraries you need to add (like stdc++ in this example).  Next, use 
the c method and provide a string of C code.  The code provided here will be compiled 
and then can be called just like a Ruby method (which is demonstrated in our call to 
hello in the main loop).  

I'll  leave  you  to  your  imagination  to  see  how  you  can  use  this  library  to 
improve performance in your own applications.  Poke around the ruby-talk mailing 
list  and  Google  to  get  some  good  ideas;  the  RubyInline  homepage  has  more 
information, too, if you're interested in putting this library to work.

LINKS

RubyInline homepage
   http://www.zenspider.com/ZSS/Products/RubyInline/
Pat Eyler's RubyInline experience
   http://on-ruby.blogspot.com/2006/07/rubyinline-making-making-things-faster.html

High Performance Rubywith C/C++   127

http://on-ruby.blogspot.com/2006/07/rubyinline-making-making-things-faster.html
http://www.zenspider.com/ZSS/Products/RubyInline/
http://www.zenspider.com/ZSS/Products/RubyInline/


128   High Performance Rubywith C/C++





Alphabetical Index
Access Control....................38

ActiveRecord......................94

ARGV.................................71

Arithmetic Operators......... 10

Array.................................. 12

assertions......................... 108

Attributes........................... 37

Bignum................................ 9

Blocks................................ 28

case Statement................... 48

class................................... 33

Class Scoped Objects......... 39

classes................................ 33

Collections......................... 11

Conditional Link Operators46

Conditional Loops ............. 50

Conditional Operators........46

Conditionals....................... 45

Cryptography................... 106

Database............................ 93

Date................................. 102

Date/Time........................102

DateTime......................... 105

DBI.................................... 93

Defining Classes.................35

Defining Methods.............. 25

Distributed Ruby................92

DRb................................... 92

ensure clause...................... 57

Environment variables....... 70

Escape Sequences................ 8

Exceptions......................... 55

exec.................................... 69

File..................................... 61

File Access Modes.............. 65

Filesystem Interaction........ 61

Fixnum................................. 9

for loop............................... 52

FTP.................................... 87

Hash...................................17

Hashing........................... 105

HTTP Networking............. 84

if statement........................ 45

IMAP..................................89

Implicit Block Usage  .........32

INI files.............................. 72

Installing on Linux............... 4

Installing on Mac OS X........ 3

Installing on Windows .........3

Interpreted .......................... 2

Interpreted language............ 2

IO.popen............................ 69

Iterating Loops...................51

Loops................................. 50

Matsumoto, Yukihiro........... 1

MD5.................................106

Methods............................. 24

Modules............................. 41

Multi-Paradigm ................... 2

MySQL.............................. 93

Networking........................ 80

Numbers.............................. 9

object-oriented language...... 6

OLE Automation................76

Open Source........................ 1

ORM (Object Relational 

Mapping)........................... 94

POP................................... 89

popen................................. 69

PostgreSQL....................... 93

Proc Objects....................... 28

Processes............................69

puts...................................... 7

Range................................. 11

references........................... 20

Registry..............................74

registry type constants........75

Regular Expressions........ 100

rescue block........................56



Rescue Statement Modifier 57

Retry.................................. 57

RubyInline....................... 114

Separating code into files... 43

SHA-1 ............................. 106

sleep................................... 66

SMTP................................. 88

SOAP................................. 91

soap4r................................ 91

Socket................................ 80

SQLite................................93

Statement Modifiers .......... 47

String Manipulation........... 97

Strings................................. 7

system................................ 69

TCPServer.......................... 81

TCPSocket......................... 82

Ternary Operator............... 47

Test Driven Development.107

Test::Unit......................... 107

thread.................................65

Throw and Catch................ 59

Time................................. 103

Types in Ruby.......................7

Unit testing...................... 107

Unless................................ 47

until loop............................ 50

Variables............................ 19

Web Services......................90

WEBrick............................ 84

while loop........................... 50

Win32................................ 72

Windows............................ 72

Windows API..................... 72

WMI.................................. 78

XML-RPC.......................... 90

Yukihiro "Matz" Matsumoto 1

 Net::HTTP.........................85


	Mr. Neighborly's Humble Little Ruby Book
	What'chu talkin' 'bout, Mister?
	What Is Ruby Anyhow?
	Installing Ruby
	Windows
	Mac OS X
	Linux

	Let's try her out!

	Welcome to Ruby.
	Basic Concepts of Ruby
	Types in Ruby
	Strings
	Numbers

	Collections
	The Range 
	The Array 
	The Hash 

	Variables and the Like

	Break it down now!
	Methods
	Defining Methods
	Using Methods

	Blocks and Proc Objects
	Block Basics
	Procs and Blocks
	Building Blocks

	Your objects lack class!
	Defining Classes
	Methods and Variables
	Attributes
	Access Control
	Class Scoped Objects

	Modules
	Creating Modules

	Files

	Hustle and flow (control).
	Conditionals
	The if statement
	The case Statement

	Loops
	Conditional Loops 
	Iterating Loops and Blocks 
	Statement Modifiers
	Controlling Loops

	Exceptions
	Handling Exceptions
	Raising Exceptions
	My Own Exception 
	Throw and Catch


	The System Beneath...
	Filesystem Interaction 
	Writing to a file  
	More file operations  

	Threads and Forks and Processes, Oh My!
	Ruby thread basics  
	Controlling threads  
	Getting information from threads  
	Processes, the other way to do stuff

	For the Environment!
	Environment variables and the like
	The command line and you
	Ruby and its little corner of your computer

	Win32 and Beyond.
	API
	The Registry
	OLE Automation


	Looking Beyond Home
	Networking and the Web
	Socket Programming
	HTTP Networking
	Other Network Services
	Web Services

	It's Like Distributed or Something...
	Data my base, please!

	It's a Library!
	String Manipulation
	Instance Methods
	Regular Expressions

	Date/Time
	Dates
	Times
	Dates and Times

	HASHING and CRYPTOGRAPHY
	Hashing
	Cryptography

	Unit testing

	Links and the Like
	High Performance Ruby with C/C++




